scholarly journals Integrated estimation of parameters of radio transmitter power amplifier with automatic mode adjustment by two-frequency test signal

2021 ◽  
pp. 59-64
Author(s):  
P. V. Sak ◽  

Comparative estimation of energy parameters of power amplifiers of single-band radio transmitters using automatic mode adjustment using a deterministic two-frequency test signal instead of a random single-band signal modulated by speech is investigated in the work. Relationships are found that allow judging the power consumption of the terminal stage of the power amplifier with automatic mode adjustment under various types of modulation based on the results of measurements obtained during tests. The ratios between the power consumption of the output stage when amplifying the random speech signal and amplifying the deterministic two-frequency test signal are obtained both without taking into account losses in the controlled power supply and taking into account such losses. Method is proposed for calculation of energy gain and efficiency factor (efficiency) when applying automatic control of supply voltage of output cascades of shortwave transmitters intended for modulation with speech signals. The loss in the regulated power supply has been estimated. The advantage of power amplifier circuits with automatic mode adjustment is justified

2014 ◽  
Vol 23 (06) ◽  
pp. 1450088 ◽  
Author(s):  
LEONARDO PANTOLI ◽  
VINCENZO STORNELLI ◽  
GIORGIO LEUZZI

In this paper, we present a low-voltage tunable active filter for microwave applications. The proposed filter is based on a single-transistor active inductor (AI), that allows the reduction of circuit area and power consumption. The three active-cell bandpass filter has a 1950 MHz center frequency with a -1 dB flat bandwidth of 10 MHz (Q ≈ 200), a shape factor (30–3 dB) of 2.5, and can be tuned in the range 1800–2050 MHz, with constant insertion loss. A dynamic range of about 75 dB is obtained, with a P1dB compression point of -5 dBm. The prototype board, fabricated on a TLX-8 substrate, has a 4 mW power consumption with a 1.2 V power supply voltage.


2013 ◽  
Vol 3 (6) ◽  
pp. 552-561 ◽  
Author(s):  
B. L. Dokic

Autonomy of power supply used in portable devices directly depends on energy efficiency of digital logic. This means that digital systems, beside high processing power and very complex functionality, must also have very low power consumption. Power consumption depends on many factors: system architecture, technology, basic cells topology-speed, and accuracy of assigned tasks. In this paper, a review and comparison of CMOS topologies techniques and operating modes is given, as CMOS technology is expected to be the optimum choice in the near future. It is shown that there is a full analogy in the behavior of digital circuits in sub-threshold and strong inversion. Therefore, synthesis of digital circuits is the same for both strong and weak operating modes. Analysis of the influence of the technology, MOS transistor threshold voltage (Vt) and power supply voltage (Vdd) on digital circuit power consumption and speed for both operating modes is given. It is shown that optimal power consumption (minimum power consumption for given speed) depends on optimal choice of threshold, and power supply voltage. Multi Vdd /Vt techniques are analyzed as well. A review and analysis of alternative logical circuit's topologies – pass logic (PL), complementary pass logic (CPL), push-pull pass logic (PPL) and adiabatic logic – is also given. As shown, adiabatic logic is the optimum choice regarding energy efficiency.


Author(s):  
Selvakumar Mariappan ◽  
Jagadheswaran Rajendran ◽  
Norlaili Mohd Noh ◽  
Harikrishnan Ramiah ◽  
Asrulnizam Abd Manaf ◽  
...  

<span>In this paper, a low power consumption linear power amplifier (PA) for Bluetooth Low Energy (BLE) application is presented. An analogue pre-distorter (APD) is integrated to the PA. The APD consist of an active inductor, driver amplifier, and a RC phase linearizer. The PA delivers more than 12dB power gain from 2.4GHz to 2.5GHz. At the center frequency of 2.45GHz, the gain of the PA is 13dB with PAE of 26.7% and maximum output power of 14dBm. The corresponding OIP3 is 27.6dBm. The supply voltage headroom of this PA is 1.8V. The propose APD serves to be a solution to improve the linearity of the PA with minimum trade-off to the power consumption.</span>


Author(s):  
N. Geetha Rani ◽  
N. Jyothi ◽  
P. Leelavathi ◽  
P. Deepthi Swarupa Rani ◽  
S. Reshma

SRAM cells are used in many applications such as micro and multi core processor. SRAM cell improves both read stability and write ability at low supply voltage. The objective is to reduce the power dissipation of a novel low power 12T SRAM cell. This method removes half-select issue in 6T and 9T SRAM cell. This work proposes new functional low-power designs of SRAM cells with 6T, 9T and 12 transistors which operate at only 0.4V power supply in sub-threshold operation at 45 nm technology. The leakage power consumption of the proposed SRAM cell is thereby reduced compared to that of the conventional six-transistor (6T) SRAM cell. 12T cell obtains low static power dissipation.


Author(s):  
V. P. Rakhlin ◽  
P. V. Sak

The article is devoted to the determination of the energy parameters of the transmitter when using automatic mode control for powering the output stages of single-sideband HF transmitters without taking into account losses in the controlled power supply.


Sign in / Sign up

Export Citation Format

Share Document