Development of Plasma Sprayed Coatings to Improve the Erosion Resistance of Wire Wrapped Screens

2021 ◽  
Author(s):  
Lukas Ochmann ◽  
Moh'd M. Amro ◽  
Bernd Gronde ◽  
Gundula Fischer ◽  
Silke Weber ◽  
...  

Abstract The installation of sand screens in wells can fail in one of two ways: by causing an unacceptable high pressure drop in the near wellbore area or by losing the ability to retain particles. Four mechanisms can lead to a failure: plugging, corrosion, erosion and mechanical deformation. To increase the lifetime under erosive conditions, a coating for wire wrapped screens was developed and tested. Erosion occurs, when formation particles hit the screen surface with high velocities or by continuous production of fines through the screen openings. The screen openings must keep a specified size in order to control the formation sand or gravel pack. If the opening size increases due to erosion, more particles are produced and erosion increases. A newly developed coating is put on the outside (i.e. facing the formation) of standard wire wrapped screens to make the slots resistant against erosion. The coating consists of ceramic or hard metal and is applied by plasma spraying. An extensive development and verification program was conducted to guarantee defined slot widths, corrosion resistance and mechanical strength of coating and screen. A test facility was built to investigate the erosion resistance of sand screens. It consists of a flow loop to circulate a slurry of water and particles through 2″ coupons. Samples of standard wire wrapped, metal mesh and coated screens were tested. The tests were conducted with flow velocities of up to 18.5 m/s and particles of up to 100 micrometer for up to 60 h. The screens where compared under consideration of optical criteria, mass loss and functionality. The coated screens showed no sign of wear on the outside and kept their initial slot size. The slots of uncoated wire wrapped screens more than doubled in some places, when eroded under the same conditions. To test the functionality of the samples, sand retention tests were conducted before and after erosion. Since there were no changes in slot width, the coated screens show the same retention capabilities before and after erosion, while metal mesh screens that were eroded under the same conditions lost their ability to retain sand. The newly developed coating improves the resistance against erosion, is able to withstand corrosive well environments and has mechanical properties suitable to be safely installed in any well. Therefore the coating has the ability to improve the lifetime of screens under erosive conditions.

Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


2021 ◽  
Vol 409 ◽  
pp. 126838
Author(s):  
Xinlong Wei ◽  
Wuyan Zhu ◽  
Aolin Ban ◽  
Dejia Zhu ◽  
Chao Zhang ◽  
...  

2000 ◽  
Vol 122 (2) ◽  
pp. 326-329 ◽  
Author(s):  
Mark Zarzour ◽  
John Vance

Metal mesh is a commercially available material used in many applications including seals, heat shields, filters, gaskets, aircraft engine mounts, and vibration absorbers. This material has been tested by the authors as a bearing damper in a rotordynamic test rig. The test facility was originally used to support the design of a turboprop engine, developing squirrel cages and squeeze film dampers for both the gas generator and power turbine rotors. To design the metal mesh damper, static stiffness and dynamic rap test measurements were first made on metal mesh samples in a specially designed nonrotating test fixture. These property tests were performed on samples of various densities and press fits. One sample was also tested in an Instron machine as an ancillary and redundant way to determine the stiffness. Using the stiffness test results and equations derived by a previous investigator, a spreadsheet program was written and used to size metal mesh donuts that have the radial stiffness value required to replace the squirrel cage in the power turbine. The squirrel cage and squeeze film bearing damper developed for the power turbine rotor was then replaced by a metal mesh donut sized by the computer code. Coast down tests were conducted through the first critical speed of the power turbine. The results of the metal mesh tests are compared with those obtained from previous testing with the squeeze film damper and show that the metal mesh damper has the same damping as the squeeze film at room temperature but does not lose its damping at elevated temperatures up to 103°C. Experiments were run under several different conditions, including balanced rotor, unbalanced rotor, heated metal mesh, and wet (with oil) metal mesh. The creep, or sag, of the metal mesh supporting the rotor weight was also measured over a period of several weeks and found to be very small. Based on these tests, metal mesh dampers appear to be a viable and attractive substitute for squeeze film dampers in gas turbine engines. The advantages shown by these tests include less variation of damping with temperature, ability to handle large rotor unbalance, and the ability (if required) to operate effectively in an oil free environment. Additional testing is required to determine the endurance properties, the effect of high impact or maneuver loads, and the ability to sustain blade loss loads (which squeeze films cannot handle). [S0742-4795(00)01002-4]


Author(s):  
Mark Zarzour ◽  
John Vance

Metal mesh is a commercially available material used in many applications including seals, heat shields, filters, gaskets, aircraft engine mounts, and vibration absorbers. This material has been tested by the authors as a bearing damper in a rotordynamic test rig. The test facility was originally used to support the design of a turboprop engine, developing squirrel cages and squeeze film dampers for both the gas generator and power turbine rotors. To design the metal mesh damper, static stiffness and dynamic rap test measurements were first made on metal mesh samples in a specially designed nonrotating test fixture. These property tests were performed on samples of various densities and press fits. One sample was also tested in an Instron machine as an ancillary and redundant way to determine the stiffness. Using the stiffness test results and equations derived by a previous investigator, a spreadsheet program was written and used to size metal mesh donuts that have the radial stiffness value required to replace the squirrel cage in the power turbine. The squirrel cage and squeeze film bearing damper developed for the power turbine rotor was then replaced by a metal mesh donut sized by the computer code. Coast down tests were conducted through the first critical speed of the power turbine. The results of the metal mesh tests are compared with those obtained from previous testing with the squeeze film damper and Show that the metal mesh damper has the same damping as the squeeze film at room temperature but does not lose its damping at elevated temperatures up to 103 °C. Experiments were run under several different conditions, including balanced rotor, unbalanced rotor, heated metal mesh, and wet (with oil) metal mesh. The creep, or sag, of the metal mesh supporting the rotor weight was also measured over a period of several weeks and found to be very small. Based on these tests, metal mesh dampers appear to be a viable and attractive substitute for squeeze film dampers in gas turbine engines. The advantages shown by these tests include less variation of damping with temperature, ability to handle large rotor unbalance, and the ability (if required) to operate effectively in an oil free environment. Additional testing is required to determine the endurance properties, the effect of high impact or maneuver loads, and the ability to sustain blade loss loads (which squeeze films cannot handle).


2016 ◽  
Vol 1140 ◽  
pp. 181-188
Author(s):  
Macario Cardone ◽  
Matthias Putz ◽  
Gerhard Schmidt ◽  
Martin Dix ◽  
Jürgen Friedrich ◽  
...  

Granulators are widely used to reduce reinforced and unreinforced plastic strands in small pieces. The tools implemented in this machining process are mainly made of high-speed steel. This work investigates diverse PVD hard thin coatings with the aim of improving tool life and efficiency in granulation technology. A test facility reproducing the main features of a real granulator has been designed and assembled. The machined strand materials are ABS plastic and fibreglass-reinforced polyamide 6, while the tested PVD films are CrN, TiCN, TiAlN and two different diamond-like carbon coatings. The wear evaluation of all coated tools has been done via structured light projection, together with a scanning electron microscopy-based analysis, before and after their implementation on the test facility. Furthermore, a suitable 2D finite element modelling of the machining process has been realized.


2011 ◽  
Vol 493-494 ◽  
pp. 447-452
Author(s):  
George Theodorou ◽  
Ourania Menti Goudouri ◽  
Lambrini Papadopoulou ◽  
Nikolaos Kantiranis ◽  
Subramaniam Yugeswaran ◽  
...  

The clinical use of plasma-sprayed hydroxyapatite (HA) coatings on metal implants has been widely investigated as the HA coating can achieve the firm and direct biological fixation with the surrounding bone tissue. It is shown in previous studies that the mechanical properties of HA coatings are improved by the addition of ZrO2 particles during the deposition of the coating on the substrate. Subsequently, the cohesive and adhesive strengths of plasma-sprayed hydroxyapatite (HA) coatings were strengthened by the ZrO2 particles addition as a reinforcing agent in the HA coating (HA+ZrO2 composite coating). The aim of the present work is to investigate and evaluate the in vitro bioactivity assessment of HA and HA/ZrO2 coatings, on stainless steel substrate, soaked in c-SBF, in order to study and compare their biological responses. The coatings were produced using vapor plasma spraying (VPS). The characterization of the surface of the coatings before and after soaking in SBF solution was performed using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction analysis (XRD). All samples were smoothed before insertion in the medium and the in vitro bioactivity of all coating samples was tested in conventional Simulated Body Fluid (c-SBF) solution for various immersion times.


Author(s):  
James E. O’Brien ◽  
Piyush Sabharwall ◽  
SuJong Yoon

A new high-temperature multi-fluid, multi-loop test facility for advanced nuclear applications is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Molten salts have been identified as excellent candidate heat transport fluids for primary or secondary coolant loops, supporting advanced high temperature and small modular reactors (SMRs). Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed. A preliminary design configuration will be presented, with the required characteristics of the various components. The loop will utilize advanced high-temperature compact printed-circuit heat exchangers (PCHEs) operating at prototypic intermediate heat exchanger (IHX) conditions. The initial configuration will include a high-temperature (750°C), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF4) flow loop operating at low pressure (0.2 MPa) at a temperature of ∼450°C. Experiment design challenges include identification of suitable materials and components that will withstand the required loop operating conditions. Corrosion and high temperature creep behavior are major considerations. The facility will include a thermal energy storage capability designed to support scaled process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will also provide important data for code verification and validation (V&V) related to these systems.


Sign in / Sign up

Export Citation Format

Share Document