scholarly journals Leishman’s Dye as a Novel Reagent in Spectrophotometric Determination of Chloramphenicol

2020 ◽  
Vol 10 (02) ◽  
pp. 250-254
Author(s):  
Jamal Sudad Raeek Othman Nabeel Sabeeh

By reviewing the literature, there is no indication concerning the use of Leishman’s dye in evaluating drug compounds by dye-color bleaching; hence, it is the first attempt to use Leishman’s dye as a novel reagent in the estimation of chloramphenicol (CAP) by an indirect spectrophotometric method in bulk and in its pharmaceutical preparations. The method includes the use of a great amount of N-bromosuccinamide (NBS) in the acidic medium as an oxidizing agent of the drug under investigation (CAP), and then using the residual of NBS for Leishman’s dye color bleaching. The absorbance has been measured at 622 nm (the maximum absorption of Leishman’s dye). A linear relationship was obtained for the Beer’s law with the concentration ranges from 10 to 250 μg/10 mL with acceptable values of molar absorptivity 0.58 × 104 L.mol-1.cm-1 and 0.055 μg.cm-2 of Sandell’s sensitivity index, which mean a high sensitivity. An approved estimation of CAP in its various pharmaceutical formulations was found.

2020 ◽  
Vol 25 (1) ◽  
pp. 68
Author(s):  
Nada A. Khalil ◽  
Walada H. Ibrahim

A simple and sensitive spectrophotometric method was described for the determination of Meropenem in pure and in pharmaceutical formulations. 2,3 dichloro 5,6 dicyano 1,4 benzoquinone(DDQ)has been used for determination of meropenem by formation of charge transfer complex measured at 345 nm.Beer᾽s law is obeyed in the concentration range of (0.625-12.5µg/ml) The molar absorptivity (2.3889×104)l.mol1-.cm1-,Sandellʹs sensitivity index is 0.0161µg.cm2-,The method is precise (relative standard deviation RSD% is better than ±3.32%) and accurate (relative error in the range of -0.97 to-0.60%)  depending on the concentration  level. The method was applied succefully to the assay of Meropenem in pharmaceutical preparation in the form of injection.   http://dx.doi.org/10.25130/tjps.25.2020.012


2020 ◽  
pp. 2172-2181
Author(s):  
Saad Hasani Sultan ◽  
Zainab Walid Majed

A simple, fast, and sensitive spectrophotometric method was suggested for the determination of Bromhexine Hydrochloride (BHH) in its pharmaceutical formulations. The method depends on the diazotization of BHH by sodium nitrite in acidic medium to produce the corresponding diazonium salt. The latter is coupled with phloroglucinol reagent in alkali medium to form a yellow water soluble azo-dye which has a maximum absorption at 405 nm with a molar absorptivity of 2.7×104 l.mol-1.cm-1 and Sandellʼs sensitivity of 0.01517 µg.cm-1. Beerʼs low is obeyed within a concentration range of 0.25-15 µg.mL-1 of BHH. The LOD and LOQ values of the proposed method were 0.087 µg.mL-1 and 0.293 µg.ml-1, respectively. The proposed method was validated with standard methods and successfully applied to the determination of Bromhexine in its pharmaceutical formulations as tablets, syrup, and injections.


2017 ◽  
Vol 9 (1) ◽  
pp. 58 ◽  
Author(s):  
Isam Eldin Hussein Elgailani ◽  
Tofeeg Haseen Alghamdi

This research aimed to develop inexpensive, safe, rapid, efficent spectrophotometric method for the assay of atenolol in some antihypertensive drugs namely Normoten in its pharmaceutical formulation. The studied method is depend on the reaction of the drug with phenol red in acidic medium, at pH 3.0. The analytical parameters have been investigated. The maximum absorbance was obtained at 429 nm and the molar absorptivity of 0.054 L mol-1 cm-1. Beer’s law is linear in the concentration range of 0.5-100 μg/mL for atenolol in Normoten. The detection and quantification limits were found to be 0.038 and 0.113μg/mL for the atenolol in Normoten respectively, and with a linear regression correlation coefficient of 0.997. The recovery was found to be 98.94 to 100.31%. The studied method is can be applied for the determination of atenolol (active ingredient) of the antihypertensive drugs in their pharmaceutical formulations.


2018 ◽  
Vol 35 (3) ◽  
pp. 45
Author(s):  
C. Bala Sekaran ◽  
A. Prameela Rani

A simple, sensitive and reproducible spectrophotometric method was developed for the determination of sitagliptin phosphate in bulk and in pharmaceutical formulations. The proposed method is based on condensation of the primary amino group of sitagliptin phosphate with acetyl acetone and formaldehyde producing a yellow colored product, which is measured spectrophotometrically at 430nm. The color was stable for about 1 hour. Beer’s law is obeyed over a concentration range of 5-25 μg/ml. The apparent molar absorptivity and Sandell sensitivity values are 1.067 x 104 Lmol-1cm-1 and 0.0471 μgcm-2 respectively. All the variables were studied to optimize the reaction conditions. No interference was observed in the presence of common pharmaceutical excipients. The validity of the method was tested by analyzing sitagliptin phosphate in its pharmaceutical preparations. Good recoveries were obtained. The developed method was successfully employed for the determination of sitagliptin phosphate in various pharmaceutical preparations.


2009 ◽  
Vol 6 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Alka Gupta ◽  
P. Mishra ◽  
K. Shah

A new, simple and sensitive spectrophotometric method in ultraviolet region has been developed for the determination of rosuvastatin calcium in bulk and in pharmaceutical formulations. Rosuvastatin exhibits absorption maxima at 244 nm with apparent molar absorptivity of 7.2345 ×104L/mol.cm in methanol. Beer’s law was found to be obeyed in the concentration range of 2-18 µg/mL. The method is accurate, precise and economical. This method is extended to pharmaceutical preparations. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically and by recovery studies


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Qabas Rashid ◽  
Ruwaida Farman Salih

An easy, rapid and economical spectrophotometric method for  determination of  Valsartan (Val), by reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) as reagent in an alkaline interemediate. This method is based on the forming of product between (Val) and the chromogenic reagent (NBD-Cl), to produce a brown color at (pH 11.9) and λmax. 470 nm.  Beer’s Law is obeyed at the concentrations range of (0.4-14.8 µg/ml), with molar absorptivity of (1.05×104 L/mol.cm) and correlation coefficient 0.9827, The limit of detection was 0.557 µg/ml. The suggested method was prosperity implement to the determination of (Val) in  pure form and in its pharmaceutical formulations (tablets).


2020 ◽  
Vol 1 (1) ◽  

A simple, accurate, precise, rapid, economical and sensitive ultraviolet spectrophotometric method has been developed for the determination of Furosemide in pharmaceutical preparations, which shows maximum absorbance at 228 nm in. Beer’s law was obeyed in the range of 1 -10 μg/ ml, with molar absorptivity of 3.5×104 L.mol-1.cm-1, relative standard deviation of the method was less than 1.4%, and accuracy (average recovery %) was 100 ± 1.0. The method was successfully applied to the determination of Furosemide in some pharmaceutical formulations (tablets, Oral solution and injection) samples. The proposed method was validated by sensitivity and precision which proves suitability for the routine analysis of Furosemide in true samples.


2007 ◽  
Vol 4 (4) ◽  
pp. 496-501 ◽  
Author(s):  
M. Vamsi Krishna ◽  
D. Gowri Sankar

Simple, rapid and sensitive spectrophotometric procedures were developed for the analysis of Alfuzosin hydrochloride (AFZ) in pure form as well as in pharmaceutical formulations. The methods are based on the reaction of AFZ with nitrite in acid medium to form diazonium ion, which is coupled with ethoxyethylenemaleic ester (Method A) or ethylcyanoacetate (Method B) or acetyl acetone (method C) in basic medium to form azo dyes, showing absorption maxima at 440, 465 and 490 nm respectively. Beer’s law is obeyed in the concentration of 4-20 μg/mL of AFZ for methods A, B and 3-15 μg/mL of AFZ for method C. The molar absorptivity and sandell’s sensitivity of AFZ- ethoxyethylenemaleic ester, AFZ- ethylcyanoacetate and AFZ-acetyl acetone are1.90 × 104, 0.022; 1.93 × 104, 0.021 and 2.67 × 104L mole-1cm-1, 0.015 μg cm-2respectively. The optimum reaction conditions and other analytical parameters were evaluated. The methods were successfully applied to the determination of AFZ in pharmaceutical formulations.


2009 ◽  
Vol 15 (2) ◽  
pp. 69-76 ◽  
Author(s):  
S.M. Al-Ghannam ◽  
A.M. Al-Olyan

A sensitive spectrophotometric method was developed for the determination of some 1,4-dihydropyridine compounds namely, nicardipine and isradipine either in pure form or in pharmaceutical preparations. The method is based on the reduction of nicardipine and isradipine with zinc powder and calcium chloride followed by further reduction with sodium pentacyanoaminoferrate (II) to give violet and red products having the absorbance maximum at 546 and 539 nm with nicardipine and isradipine, respectively. Beer's law was obeyed over the concentration range 8.0-180 ?g/ml with the detection limit of 1.67 ?g/ml for nicardipine and 8.0-110 ?g/ml with the detection limit of 1.748 ?g/ml for isradipine. The analytical parameters and their effects on the reported methods were investigated. The molar absorptivity, quantization limit, standard deviation of intercept (Sa), standard deviation of slope (Sb) and standard deviation of the residuals (Sy/x) were calculated. The composition of the result compounds were found 1:1 for nicardipine and 1:2 for isradipine by Job's method and the conditional stability constant (Kf) and the free energy changes (?G) were calculated for compounds formed. The proposed method was applied successfully for the determination of nicardipine and isradipine in their dosage forms. The results obtained were in good agreement with those obtained using the reference or official methods. A proposal of the reaction pathway was presented.


2013 ◽  
Vol 10 (3) ◽  
pp. 965-970
Author(s):  
Baghdad Science Journal

A simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.


Sign in / Sign up

Export Citation Format

Share Document