scholarly journals DEVELOPMENT AND VALIDATION OF SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF DPP-4 INHIBITOR, SITAGLIPTIN, IN ITS PHARMACEUTICAL PREPARATIONS

2018 ◽  
Vol 35 (3) ◽  
pp. 45
Author(s):  
C. Bala Sekaran ◽  
A. Prameela Rani

A simple, sensitive and reproducible spectrophotometric method was developed for the determination of sitagliptin phosphate in bulk and in pharmaceutical formulations. The proposed method is based on condensation of the primary amino group of sitagliptin phosphate with acetyl acetone and formaldehyde producing a yellow colored product, which is measured spectrophotometrically at 430nm. The color was stable for about 1 hour. Beer’s law is obeyed over a concentration range of 5-25 μg/ml. The apparent molar absorptivity and Sandell sensitivity values are 1.067 x 104 Lmol-1cm-1 and 0.0471 μgcm-2 respectively. All the variables were studied to optimize the reaction conditions. No interference was observed in the presence of common pharmaceutical excipients. The validity of the method was tested by analyzing sitagliptin phosphate in its pharmaceutical preparations. Good recoveries were obtained. The developed method was successfully employed for the determination of sitagliptin phosphate in various pharmaceutical preparations.

2013 ◽  
Vol 10 (3) ◽  
pp. 965-970
Author(s):  
Baghdad Science Journal

A simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.


2014 ◽  
Vol 50 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Paulo Roberto da Silva Ribeiro ◽  
Reginária Morais Duarte

A simple, precise, sensitive, rapid, specific and economical spectrophotometric method was developed to determine methyldopa (MTD) content in bulk and pharmaceutical dosage formulations. The proposed method was based on the formation of a colored product from the nitrosation reaction of MTD with sodium nitrite in an acid medium. The resultant nitroso derivative species reacts further with sodium hydroxide and is converted it into a more stable compound. This yellow nitrosation product exhibited an absorption maximum at 430 nm. Beer's Law was obeyed in a concentration range of 6.37 to 82.81 μg mL-1 MTD with an excellent coefficient of determination (R2 = 0.9998). No interference was observed from common excipients in formulations. The results showed the method to be simple, accurate and readily applied for the determination of MTD in pure form and in pharmaceutical preparations. The analytical results obtained for these products using the proposed method are in agreement with those of the Brazilian Pharmacopoeia procedure at a 95% confidence level.


2020 ◽  
Vol 10 (02) ◽  
pp. 250-254
Author(s):  
Jamal Sudad Raeek Othman Nabeel Sabeeh

By reviewing the literature, there is no indication concerning the use of Leishman’s dye in evaluating drug compounds by dye-color bleaching; hence, it is the first attempt to use Leishman’s dye as a novel reagent in the estimation of chloramphenicol (CAP) by an indirect spectrophotometric method in bulk and in its pharmaceutical preparations. The method includes the use of a great amount of N-bromosuccinamide (NBS) in the acidic medium as an oxidizing agent of the drug under investigation (CAP), and then using the residual of NBS for Leishman’s dye color bleaching. The absorbance has been measured at 622 nm (the maximum absorption of Leishman’s dye). A linear relationship was obtained for the Beer’s law with the concentration ranges from 10 to 250 μg/10 mL with acceptable values of molar absorptivity 0.58 × 104 L.mol-1.cm-1 and 0.055 μg.cm-2 of Sandell’s sensitivity index, which mean a high sensitivity. An approved estimation of CAP in its various pharmaceutical formulations was found.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kumble Divya ◽  
Badiadka Narayana

A simple and highly selective spectrophotometric method has been developed for the determination of selegiline hydrochloride in bulk and formulations. Method A is based on the oxidation of 3-methyl-2-benzothiazolinone hydrazone in the presence of ceric ammonium sulphate, followed by its coupling reaction with drug to form a colored product having λmax of 629 nm. Method B is based on the coupling reaction of drug with 4-aminoantipyrine to give a new ligand that reacts with copper(II) to give intense bluish red colored chelate which is measured at 539 nm. Beer’s law is obeyed in the range of 10.00–85.00 μg mL−1 with molar absorptivity of 0.98×104 for method A and 20.00–120.00 μg mL−1 with molar absorptivity of 0.94×104 for method B. The optimum reaction condition and the analytical parameters are evaluated. The results obtained indicate that the methods are free from interference of the ingredients; thus they are successfully applied to pharmaceutical formulations.


2009 ◽  
Vol 6 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Alka Gupta ◽  
P. Mishra ◽  
K. Shah

A new, simple and sensitive spectrophotometric method in ultraviolet region has been developed for the determination of rosuvastatin calcium in bulk and in pharmaceutical formulations. Rosuvastatin exhibits absorption maxima at 244 nm with apparent molar absorptivity of 7.2345 ×104L/mol.cm in methanol. Beer’s law was found to be obeyed in the concentration range of 2-18 µg/mL. The method is accurate, precise and economical. This method is extended to pharmaceutical preparations. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically and by recovery studies


2008 ◽  
Vol 58 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Basavaraj Hiremath ◽  
Bennikallu Mruthyunjayaswamy

Development and validation of spectrophotometric methods for determination of ceftazidime in pharmaceutical dosage formsTwo spectrophotometric methods for the determination of ceftazidime (CFZM) in either pure form or in its pharmaceutical formulations are described. The first method is based on the reaction of 3-methylbenzothiazolin-2-one hydrazone (MBTH) with ceftazidime in the presence of ferric chloride in acidic medium. The resulting blue complex absorbs at λmax628 nm. The second method describes the reaction between the diazotized drug andN-(1-naphthyl)ethylenediamine dihydrochloride (NEDA) to yield a purple colored product with λmaxat 567 nm. The reaction conditions were optimized to obtain maximum color intensity. The absorbance was found to increase linearly with increasing the concentration of CFZM; the systems obeyed the Beer's law in the range 2-10 and 10-50 μg mL-1for MBTH and NEDA methods, resp.LOD, LOQand correlation coefficient values were 0.15, 0.79 and 0.50, 2.61. No interference was observed from common excipients present in pharmaceutical formulations. The proposed methods are simple, sensitive, accurate and suitable for quality control applications.


2020 ◽  
Vol 10 (01) ◽  
pp. 68-73
Author(s):  
Intidhar D. Sulaiman ◽  
Walaa A. Abd Alrada

New simple, sensitive, accurate, and inexpensive spectrophotometric technique has been developed for the estimation of Metochloropramide hydrochloride [MCP-HCl] in pure and pharmaceutical preparation. This technique is based on the diazotization of a primary amino group of Metochloropramide hydrochloride [MCP-HCl] with NaNo2 and HCl followed by coupling with p-nitro aniline in alkaline medium to obtain a stable red-colored water-soluble azo-dye, show a maximum absorption (λmax) at 513. 50nm. Bear,s low is obeyed in the concentration range of (0.2–25) μg.ml-1 with molar absorptivity of 2.313×103L.mol-1.cm-1and sandall’s sensitivity 0.0145 μg.mL-2. The limit of detection (LOD) and limit of quantitative were 0.182 μg.mL-1and 0.553 μg.mL-1, respectively. The proposed technique successfully applied to (tablets, syrup, and injection).


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Qabas Rashid ◽  
Ruwaida Farman Salih

An easy, rapid and economical spectrophotometric method for  determination of  Valsartan (Val), by reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) as reagent in an alkaline interemediate. This method is based on the forming of product between (Val) and the chromogenic reagent (NBD-Cl), to produce a brown color at (pH 11.9) and λmax. 470 nm.  Beer’s Law is obeyed at the concentrations range of (0.4-14.8 µg/ml), with molar absorptivity of (1.05×104 L/mol.cm) and correlation coefficient 0.9827, The limit of detection was 0.557 µg/ml. The suggested method was prosperity implement to the determination of (Val) in  pure form and in its pharmaceutical formulations (tablets).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Safwan Ashour ◽  
Mouhammed Khateeb

A simple and sensitive kinetic spectrophotometric method was developed for the determination of fexofenadine hydrochloride in bulk and pharmaceutical preparations. The method is based on a kinetic investigation of the oxidation reaction of fexofenadine using alkaline potassium permanganate as an oxidizing agent at room temperature. The reaction is followed spectrophotometrically by measuring the increase of absorbance owing to the formation of manganate ion at 610 nm. The initial rate and fixed time (at 15 min) methods are utilized for construction of calibration graphs. All the reaction conditions for the proposed method have been studied. The linearity range was found to be 2.5–50.0 μg mL−1 with detection limit of 0.055 μg mL−1 for both initial rate and fixed time methods. The proposed method was applied successfully for the determination of fexofenadine in pharmaceutical formulations; the percentage recoveries were 99.98–101.96%. The results obtained were compared statistically with those obtained by the official method and showed no significant differences regarding accuracy and precision.


2020 ◽  
Vol 1 (1) ◽  

A simple, accurate, precise, rapid, economical and sensitive ultraviolet spectrophotometric method has been developed for the determination of Furosemide in pharmaceutical preparations, which shows maximum absorbance at 228 nm in. Beer’s law was obeyed in the range of 1 -10 μg/ ml, with molar absorptivity of 3.5×104 L.mol-1.cm-1, relative standard deviation of the method was less than 1.4%, and accuracy (average recovery %) was 100 ± 1.0. The method was successfully applied to the determination of Furosemide in some pharmaceutical formulations (tablets, Oral solution and injection) samples. The proposed method was validated by sensitivity and precision which proves suitability for the routine analysis of Furosemide in true samples.


Sign in / Sign up

Export Citation Format

Share Document