Effect of Imperatorin in Neuropathology of Parkinson’s Disease: An In Silico Study

Author(s):  
Krishnapriya Madhu Varier ◽  
Sumathi Thangarajan ◽  
Arulvasu Chinnasamy

Parkinson’s disease (PD) is an age related neurodegenerative disorder characterized by thedopaminergic neurons loss in the midbrain. Even though there are some drugs in the market to ease parkinsonian symptoms, an accurate drug to prevent or cure the disease is still unknown. This study is an attempt to estimate in silico; a bioactive plant fucocoumarinImperatorin; for its ability as an anti-PD drug, using Autodock 4.2, Pre-ADMET and molinspiration tools against the antioxidants involved in neuropathology of PD, keeping amantadine as a positive control. The molecules selected for the study are Cyclo- Oxygenase 1 (COX-1), Homo-Oxygenase-1(HO-1), NRF2-Keap1, Lipo-Oxygenase 1(LOX-1), Phospholipase A2 (pA2), DJ-1 and superoxide dismutase (SOD). The reliability of the 3 Dimensional (3-D) structures generated were confirmed using WHATIF Server. The study predicted Imperatorin as a potent anti-PD drug, being good inhibitors of COX-1, HO-1 and LOX-1, having less human toxicity and better ability to cross Blood Brain-Barrier (BBB).

2020 ◽  
Vol 21 (10) ◽  
pp. 3459 ◽  
Author(s):  
Sandra Barata-Antunes ◽  
Fábio G. Teixeira ◽  
Bárbara Mendes-Pinheiro ◽  
Ana V. Domingues ◽  
Helena Vilaça-Faria ◽  
...  

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. The neurodegeneration leading to incapacitating motor abnormalities mainly occurs in the nigrostriatal pathway due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Several animal models have been developed not only to better understand the mechanisms underlying neurodegeneration but also to test the potential of emerging disease-modifying therapies. However, despite aging being the main risk factor for developing idiopathic PD, most of the studies do not use aged animals. Therefore, this study aimed at assessing the effect of aging in the unilateral 6-hydroxydopamine (6-OHDA)-induced animal model of PD. For this, female young adult and aged rats received a unilateral injection of 6-OHDA into the medial forebrain bundle. Subsequently, the impact of aging on 6-OHDA-induced effects on animal welfare, motor performance, and nigrostriatal integrity were assessed. The results showed that aging had a negative impact on animal welfare after surgery. Furthermore, 6-OHDA-induced impairments on skilled motor function were significantly higher in aged rats when compared with their younger counterparts. Nigrostriatal histological analysis further revealed an increased 6-OHDA-induced dopaminergic cell loss in the SNpc of aged animals when compared to young animals. Overall, our results demonstrate a higher susceptibility of aged animals to 6-OHDA toxic insult.


2019 ◽  
Vol 20 (20) ◽  
pp. 5208 ◽  
Author(s):  
Bongki Cho ◽  
Taeyun Kim ◽  
Yu-Jin Huh ◽  
Jaemin Lee ◽  
Yun-Il Lee

Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens. Currently, the common treatment is replacement with levodopa to address low dopamine levels; however, this does not halt the progression of PD and is associated with adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with fewer side effects have been reported as candidate treatments of age-related neurodegenerative diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis, the ubiquitin‒proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects of using natural products as a therapeutic strategy. We also summarize the efforts to use natural extracts to develop novel pharmacological candidates for treatment of age-related PD.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Shankar J. Chinta ◽  
Subramanian Rajagopalan ◽  
Abirami Ganesan ◽  
Julie K. Andersen

Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized in part by the preferential loss of nigrostriatal dopaminergic neurons. Although the precise etiology of PD is unknown, accumulating evidence suggests that PD involves microglial activation that exerts neurotoxic effects through production of proinflammatory cytokines and increased oxidative and nitrosative stress. Thus, controlling microglial activation has been suggested as a therapeutic target for combating PD. Previously we demonstrated that pharmacological inhibition of a class of enzymes known as prolyl hydroxylases via 3,4-dihydroxybenzoate administration protected against MPTP-induced neurotoxicity, however the exact mechanisms involved were not elucidated. Here we show that this may be due to DHB’s ability to inhibit microglial activation. DHB significantly attenuated LPS-mediated induction of nitric oxide synthase and pro-inflammatory cytokines in murine BV2 microglial cellsin vitroin conjunction with reduced ROS production and activation of NFκB and MAPK pathways possibly due to up-regulation of HO-1 levels. HO-1 inhibition partially abrogates LPS-mediated NFκB activity and subsequent NO induction.In vivo, DHB pre-treatment suppresses microglial activation elicited by MPTP treatment. Our results suggest that DHB’s neuroprotective properties could be due to its ability to dampen induction of microglial activation via induction of HO-1.


2015 ◽  
Vol 51 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Débora Dalla Vecchia ◽  
Marissa Giovanna Schamne ◽  
Marcelo Machado Ferro ◽  
Ana Flávia Chaves dos Santos ◽  
Camila Lupepsa Latyki ◽  
...  

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the slow and progressive death of dopaminergic neurons in the (substantia nigra pars compact). Hypericum perforatum (H. perforatum) is a plant widely used as an antidepressant, that also presents antioxidant and anti-inflammatory properties. We evaluated the effects of H. perforatum on the turning behavior of rats submitted to a unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle as an animal model of PD. The animals were treated with H. perforatum (100, 200, or 400 mg/kg, v.o.) for 35 consecutive days (from the 28th day before surgery to the 7th day after). The turning behavior was evaluated at 7, 14 and 21 days after the surgery, and the turnings were counted as contralateral or ipsilateral to the lesion side. All tested doses significantly reduced the number of contralateral turns in all days of evaluation, suggesting a neuroprotective effect. However, they were not able to prevent the 6-OHDA-induced decrease of tyrosine hydroxylase expression in the lesioned striatum. We propose that H. perforatum may counteract the overexpression of dopamine receptors on the lesioned striatum as a possible mechanism for this effect. The present findings provide new evidence that H. perforatum may represent a promising therapeutic tool for PD.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Yousuf Hasan Yousuf Bakhit ◽  
Mohamed Osama Mirghani Ibrahim ◽  
Mutaz Amin ◽  
Yousra Abdelazim Mirghani ◽  
Mohamed Ahmed Salih Hassan

Introduction. Parkinson’s disease (PD) is a common neurodegenerative disorder. Mutations in PINK1 are the second most common agents causing autosomal recessive, early onset PD. We aimed to identify the pathogenic SNPs in PARK2 and PINK1 using in silico prediction software and their effect on the structure, function, and regulation of the proteins. Materials and Methods. We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structure and function. Result. Twenty-one SNPs in PARK2 gene were found to affect transcription factor binding activity. 185 SNPs were found to affect splicing. Ten SNPs were found to affect the miRNA binding site. Two SNPs rs55961220 and rs56092260 affected the structure, function, and stability of Parkin protein. In PINK1 gene only one SNP (rs7349186) was found to affect the structure, function, and stability of the PINK1 protein. Ten SNPs were found to affect the microRNA binding site. Conclusion. Better understanding of Parkinson’s disease caused by mutations in PARK2 and PINK1 genes was achieved using in silico prediction. Further studies should be conducted with a special consideration of the ethnic diversity of the different populations.


Author(s):  
Swati Sharan ◽  
Pravir Kumar ◽  
Rashmi K Ambasta

Aim: To screen zinc database for structurally similar molecules to compound 23 that targets DJ1 for use as a neuroprotective agent for Parkinson’s disease. Background: Parkinson’s disease (PD), the second most common chronic neurodegenerative disorder characterized by progressive loss of dopaminergic neurons of the substantia nigra. To date, several proteins account for the recessive familial PD-forms, namely, Parkin, PINK-1, DJ-1, SNCA, PARK2, and LRRK2 Genes. DJ1 is one of the important central points that may be targeted for PD therapy. Recently, Compound 23 has been observed to exert the neuroprotective effect against neurodegeneration in PD model, but due to its toxic substructure, the hunt for better nontoxic compound continues. Objective: The overall objective of our work is to apply in silico approaches to screen structure similar compounds that interacts potentially with DJ1 and may serve as a good therapeutic molecule for PD. Method: Initial data mining was done from zinc database and then screened compounds were additionally screened with toxicity checker, carcinopred, ADMET analysis and docking analysis. Results: The basic screening of database for structurally similar chemicals to compound 23 resulted in 50 compounds, which were further screened to twenty-three and finally seven compounds have been screened based on the toxicity and carcinopred test. Later, the seven compounds were docked and analysed for its docking efficiency with DJ1. Our result of molecular docking and molecular simulation analysis highlights Molecule 42(SS2), to exhibit best binding affinity against DJ-1 protein target and can be proposed to be used as a therapeutic agent to modulate neurodegenerative proteins. Conclusion: Therefore, we conclude discovery of novel, non-toxic, non-carcinogenic; ADMET investigated capable of crossing BB barrier but structurally similar compounds of Compound-23, specifically molecule 42(SS2) and potentially molecule 34(SS1) to be used as a neuroprotective agent for Parkinson’s disease.


Author(s):  
Wen Li ◽  
YuHong Fu ◽  
Glenda M. Halliday ◽  
Carolyn M. Sue

Parkinson’s disease (PD) is an age-related neurodegenerative disorder affecting millions of people worldwide. The disease is characterized by the progressive loss of dopaminergic neurons and spread of Lewy pathology (α-synuclein aggregates) in the brain but the pathogenesis remains elusive. PD presents substantial clinical and genetic variability. Although its complex etiology and pathogenesis has hampered the breakthrough in targeting disease modification, recent genetic tools advanced our approaches. As such, mitochondrial dysfunction has been identified as a major pathogenic hub for both familial and sporadic PD. In this review, we summarize the effect of mutations in 11 PARK genes (SNCA, PRKN, PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, FBXO7, VPS35, CHCHD2, and VPS13C) on mitochondrial function as well as their relevance in the formation of Lewy pathology. Overall, these genes play key roles in mitochondrial homeostatic control (biogenesis and mitophagy) and functions (e.g., energy production and oxidative stress), which may crosstalk with the autophagy pathway, induce proinflammatory immune responses, and increase oxidative stress that facilitate the aggregation of α-synuclein. Thus, rectifying mitochondrial dysregulation represents a promising therapeutic approach for neuroprotection in PD.


2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
Marco André Cardoso ◽  
Bassam Felipe Mogharbel ◽  
Ana Carolina Irioda ◽  
Priscila Elias Ferreira Stricker ◽  
Robson Camilotti Slompo ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the standard gold drug available for the treatment of PD. Curcumin has a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, antitumor properties. Copolymers composed of poly(ethylene oxide) (PEO) and biodegradable polyesters like poly(ε-caprolactone) (PCL) that can self-assemble into nanoparticles (NP). This study describes the development of NH2-PEO-PCL diblock copolymer positively charged and modified by the addition of glutathione (GSH) on the outer surface, resulting in a synergistic delivery of L-DOPA and curcumin that would be able to pass the blood-brain barrier. Methods The NH2-PEO-PCL nanoparticles suspensions were prepared using a nanoprecipitation and solvent displacement method and were coated with GSH. NP was submitted to various characterizations assays, and to ensure the bioavailability, Vero and PC12 cells were treated with various concentrations of the loaded and unloaded NP to observe cytotoxicity. Results NP has successfully loaded L-DOPA and curcumin was stable after freeze-drying, capable of advancing into in vitro toxicity testing. After being treated up to 72 hours of various concentrations of L-DOPA and curcumin loaded NP Vero and PC12 cells, the viability of the treated cells maintained a high percentage indicating that the NPs are biocompatible. Conclusions NP consisting of NH2-PEO-PCL have been characterized as potential formulations for brain delivery of L-DOPA and curcumin, and obtained results also indicate that the developed biodegradable nanomicelles were blood compatible, presented low cytotoxicity even in longer exposure times.


Author(s):  
Bianca Liffey Brito Marino ◽  
Kessia Priscila Araújo Sousa ◽  
Cleydson Breno Rodrigues dos Santos ◽  
Carlton Anthony Taft ◽  
Carlos Henrique Tomich de Paula da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document