scholarly journals Self-assembled nanocapsules in water: a molecular mechanistic study

2017 ◽  
Vol 19 (31) ◽  
pp. 20377-20382
Author(s):  
Hang Xiao ◽  
Xiaoyang Shi ◽  
Xi Chen

One-end-open carbon nanotubes with an appropriate radius difference can coaxially self-assemble into a nanocapsule with very high internal pressure (on the order of 1 GPa), underpinning potential applications in nano-reactors, drug-delivery, etc.

2017 ◽  
Vol 18 (1-2) ◽  
Author(s):  
Rico Harting ◽  
Marius Barth ◽  
Thomas Bührke ◽  
Regina Sophia Pfefferle ◽  
Svea Petersen

AbstractSince late 1990s, polyetheretherketone (PEEK) has presented a promising polymeric alternative to metal implant components, particularly in orthopedic and traumatic applications. However, PEEK is biologically inert, which has constrained its potential applications. In this manner, enhancing the bioactivity of PEEK is a huge challenge that must be comprehended to completely understand the potential advantages. Up to now, two noteworthy methodologies are discussed to enhance the bioactivity of PEEK, including bulk and surface modification. Although the latter is extremely challenging due to the very high physical and chemical stability of the high performance polymer, there are some stated modification reactions in the literature, which will be collocated with in the literature-reported PEEK composites in the present article. We will furthermore add information on polymer-based drug delivery systems and the biofunctionalization of polymers in general and discuss their applicability for PEEK, as we estimate that these strategies will gain greater attention in the future. At the end of the article, our own research on the development of a PEEK-associated biodegradable drug-delivery system with potential application in dentistry or orthopedics will be highlighted.


2014 ◽  
Vol 28 (14) ◽  
pp. 1450074 ◽  
Author(s):  
Na Chen ◽  
Qing Xu ◽  
Xiang Ye

The single-walled carbon nanotubes (SWCNTs) under high internal pressure are studied by the constant-pressure molecular dynamics method. The results show that SWCNTs are suitable candidates for high pressure nanocontainer, and they can resist 30 GPa to 110 GPa internal pressure. We find that the ultimate internal pressure that nanotubes can sustain is mainly determined by the radius of the tube, and it is not sensitive to the tube chirality. The breaking of the nanotube induced by high internal pressure is mainly due to bond stretching rather than bond angle changing. An elastic model is used to explain the size-dependent ultimate internal pressure behavior for SWCNTs.


NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550010 ◽  
Author(s):  
R. Afshari ◽  
S. Mazinani ◽  
M. Abdouss

Carbon nanotube-natural biopolymer nanovectors have important potential applications in delivery system for drugs and biomolecules. In this work, the use of multi-walled carbon nanotubes (MWCNT) as nanoreservoirs for drug loading and controlled release is demonstrated. We synthesized different carbon nanotube-based drug delivery systems including acid and amide-functionalized MWCNT; chitosan (CS) covalently grafted to functionalized MWCNT and MWCNT-CS nanoparticles (NPs) using an ionotropic gelation method as a sustained-release systems for delivery of Tenofovir (hydrophilic anti-retroviral drug). The prepared NPs as different drug delivery systems were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). As it is shown, in vitro drug release studies indicated that the cumulative release rate of Tenofovir from MWCNT–CS NPs shows the best result and it reaches the maximum value (90%) after about 120 h. Moreover, comparing to ungrafted CNTs, MWCNT–CS shows high dispersability and long-term stability in aqueous medium which approves the effective solubilization of MWCNT followed by grafting with CS.


2012 ◽  
Vol 217-219 ◽  
pp. 130-133 ◽  
Author(s):  
You Hong Tang ◽  
Nikolai Witt ◽  
Lin Ye

A conductive silicone rubber (SR) composite, filled with both carbon nanotubes (CNT) and carbon black (CB) is prepared by a simple ball milling method. Because of the good dispersion and synergistic effects of CNT and CB, the SR composite shows improvement in mechanical properties. As well, due to the assembly of conductive pathways generated by the CNT and CB, the nanocomposite becomes highly conductive at a comparatively low concentration, with very high sensitivity for tensile and compressive stress. These outstanding properties show that the SR composite has potential applications in tensile and pressure sensors.


2018 ◽  
Vol 2 (1) ◽  

During the past years, carbon nanotubes (CNTs) have attracted considerable interest since their first discovery. Great progress has been made in the field of nanomaterials given their great potential in biomedical applications. Carbon nanotubes (CNTs), due to their unique physicochemical properties, have become a popular tool in cancer diagnosis and therapy. They are considered one of the most promising nanomaterials with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to these cells because of the unique structure, extremely high specific surface area to-volume ratio enable them to use in an intense real time applications such as detection and treatment of cancerous cells, nervous disorders, tissue repair. and excellent electrical and mechanical properties carbon nanotubes composed of excellent mechanical strength, electrical and thermal conductivities makes them a suitable substance toward developing medical devices., CNTs have been explored in almost every single cancer treatment modality, including drug delivery with small nanomolecules, lymphatic targeted chemotherapy, thermal therapy, photodynamic therapy, and gene therapy and demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Majority of the biomedical applications of CNTs must be used after successful functionalization for more potential applications than pristine CNTs. There are several approaches to modify pristine CNTs to potentially active. CNTs poised into the human life and exploited in medical context. Here in, we reviewed the following topics (i) Functionalization of CNTs (ii) CNTs in real time applications such as drug delivery, gene therapy, biosensors and bio imaging; (iii) CNTs 3D printed scaffolds for medicine and (iv) Biocompatability and Biodegradability. Single-walled carbon nanotubes (SWCNTs) were synthesized using the high-pressure carbon monoxide disproportionation process (HiPCO). The SWCNT diameter, diameter distribution and yield can be varied depending on the process parameters. The obtained HiPCO product present an iron nanoparticle encapsulated heteronanocarbon (core-shell nanoparticles) at low pressure (1 bar) after removing of iron metal catalyst nanoparticle and amorphous carbon by acid immersion and oxidation. The resulting therapeutic molecule in the form of coreshell nanoparticles and single walled carbon nanotubes after functionalization by filling of iron can be use as therapeutic nanomaterials in nanomedicine in diagnosis and treatment of cancer tumor. This paper describes the synthesis method and role of multifunctional nanoparticle in diagnosis and treatment of cancer. Therefore, the aim of this review is to provide basic information on nanoparticles, describe previously developed methods to functionalize nanoparticles and discuss their potential applications in nanobiomedical and mention the therapeutic nanoparticle large scale production and commercialization challenges. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future carbon nanotubes from synthesis to in vivo biomedical applications.


2019 ◽  
Vol 20 (9) ◽  
pp. 2064 ◽  
Author(s):  
Anna Jagusiak ◽  
Katarzyna Chłopaś ◽  
Grzegorz Zemanek ◽  
Małgorzata Jemioła-Rzemińska ◽  
Barbara Piekarska ◽  
...  

Designing an effective targeted anticancer drug delivery method is still a big challenge, since chemotherapeutics often cause a variety of undesirable side effects affecting normal tissues. This work presents the research on a novel system consisting of single walled carbon nanotubes (SWNT), dispersed with Congo Red (CR), a compound that forms self-assembled ribbon-like structures (SRLS) and anticancer drug doxorubicin (DOX). SWNT provide a large surface for binding of planar aromatic compounds, including drugs, while CR supramolecular ribbon-like assemblies can be intercalated by drugs, like anthracycline rings containing DOX. The mechanism of interactions in SWNT–CR–DOX triple system was proposed based on electrophoretic, spectral, Dynamic Light Scattering and scanning electron microscopy analyzes. The profile of drug release from the investigated system was evaluated using dialysis and Differential Scanning Calorimetry. The results indicate that ribbon-like supramolecular structures of CR bind to SWNT surface forming SWNT–CR complexes which finally bind DOX. The high amount of nanotube-bound CR greatly increases the capacity of the carrier for the drug. The high capacity for drug binding and possible control of its release (through pH changes) in the analyzed system may result in prolonged and localized drug action. The proposed SWNT–CR–DOX triple system meets the basic criteria that justifies its further research as a potential drug carrier.


RSC Advances ◽  
2018 ◽  
Vol 8 (30) ◽  
pp. 16444-16454 ◽  
Author(s):  
Edyta Niezabitowska ◽  
Jessica Smith ◽  
Mark R. Prestly ◽  
Riaz Akhtar ◽  
Felix W. von Aulock ◽  
...  

Facile route to polymer carbon nanotube nanocomposites.


2015 ◽  
Vol 29 (22) ◽  
pp. 1550122 ◽  
Author(s):  
Muhammad Zaka Ansar ◽  
Shahid Atiq ◽  
Saira Riaz ◽  
Shahzad Naseem ◽  
Shahid M. Ramay ◽  
...  

In recent years, use of magnetic nanoparticles in biomedical applications has increased tremendously. In particular, magnetite [Formula: see text] nanoparticles being highly biocompatible are rated very high due to their potential applications in biomedicines, for instance in anticancer drug delivery. In this work, the [Formula: see text] nanoparticles have been synthesized using a novel sol–gel based autocombustion technique. The crystal structure of the [Formula: see text] phase was confirmed by the data obtained from X-ray diffraction. Scherrer’s formula was employed to estimate the crystallite size of the [Formula: see text] nanoparticles. The structural morphology, investigated by using a scanning electron microscopy (SEM), revealed well-dispersed and uniform sized grains in the sample prepared using enhanced fuel concentration. A vibrating sample magnetometer (VSM) was employed to investigate the magnetic characteristics of the samples which confirmed the superparamagnetic nature of the [Formula: see text] samples, essentially required for cancer treatment. These nanoparticles could further be modified and functionalized by suitable polymers to achieve better biocompatibility before being injected into the diseased cells.


2020 ◽  
Vol 11 (03) ◽  
pp. 373-378
Author(s):  
Ashish Suttee ◽  
Vijay Mishra ◽  
Manvendra Singh ◽  
Pallavi Nayak ◽  
Pavani Sriram

Carbon nanotubes (CNTs) have been frequently acquired as one of the fascinating and advanced nanocarriers for drug delivery and many potential applications due to its unique physicochemical properties. During recent years CNTs have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalized with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicity, and drug delivery in tumor cells.


2019 ◽  
Author(s):  
Luke Clifton ◽  
Nicoló Paracini ◽  
Arwel V. Hughes ◽  
Jeremy H. Lakey ◽  
Nina-Juliane Seinke ◽  
...  

<p>We present a reliable method for the fabrication of fluid phase unsaturated bilayers which are readily self-assembled on charged self-assembled monolayer (SAM) surfaces producing high coverage floating supported bilayers where the membrane to surface distance could be controlled with nanometer precision. Vesicle fusion was used to deposit the bilayers onto anionic SAM coated surfaces. Upon assembly the bilayer to SAM solution interlayer thickness was 7-10 Å with evidence suggesting that this layer was present due to SAM hydration repulsion of the bilayer from the surface. This distance could be increased using low concentrations of salts which caused the interlayer thickness to enlarge to ~33 Å. Reducing the salt concentration resulted in a return to a shorter bilayer to surface distance. These accessible and controllable membrane models are well suited to a range of potential applications in biophysical studies, bio-sensors and Nano-technology.</p><br>


Sign in / Sign up

Export Citation Format

Share Document