Cyclamen persicum: Methanolic Extract Using Gas Chromatography-Mass Spectrometry (GC-MS) Technique

Author(s):  
Israa Adnan Ibraheam ◽  
Imad Hadi Hameed S. ◽  
Haider Mashkoor Hussein

Cyclamen was traditionally classified in the family Primulaceae, was reclassified in the subfamily Myrsinoideae within the family Primulaceae. The objective of this study was analysis of the secondary metabolite products. Bioactives are chemical compounds often referred to as secondary metabolites. Thirty eight bioactive compounds were identified in the methanolic extract of Cyclamen persicum. The identification of bioactive chemical compounds is based on the peak area, retention time molecular weight and molecular formula. GC-MS analysis of Cyclamen persicum revealed the existence of the3-Oxo-androsta-1,4-dien-17β-spiro-2'-3'-oxo-oxetane, 3,5-Dithiahexanol 5,5-dioxide, 1-(2-Nitrophenyl)piperazine, Oxime-,methoxy-phenyl- , Cyclohexene, 1-methyl-4-(1-methylethenyl)-,(S)-, D-Limonene , Fumaric acid,3-methylbut-3-enyl undecyl ester, Geranyl vinyl ether, 3,6,9,12-Tetraoxatetradecan -1-ol,14-[4-(1-,1,3,3-tetramethylbu, Cis-5,8,11,14,17-Eicosapentaenoic acid, α-Terpineol, 3-Allyl-6-methoxyphenol, 3-Cyclohexene-1-methanol,α,α,4-trimethyl-,acetate, Orcinol, 4,5-di-epi-aristolochene, Trans-calamenene, 3-(N,N-Dimethyllaurylammonio)propanesulfonate, Deoxyqinghaosu, Atranorin , N-[4-(4-Chlorophenyl)isothiazol-5-yl)-1-methylpiperidin-2-imine, 10-Heptadecen-8-ynoic acid , methyl ester, (E)-, 2-Pentadecanone,6,10,14-trimethyl-, Caffeine, 4,4,8-Trimethyltricyclo[6.3.1.0(1.5)]dodecane-2,9-diol , Bufa-20,22-dienolide, 3,14-dihydroxy-,(3β,5β)-, 1-(3-methyl-2-butenyl)-3,6-diazahomoadamantan-9-ol , 9,12-Octadecadienoic acid (Z,Z)-, methyl ester, 9-Octadecenamide,(Z)-, 9,10-Secocholesta -5,7,10(19)-triene-3,24,25-triol,(3β,5Z,7E)-, Tributyl acetylcitrate, Cyproheptadine, 3,9-Epoxypregn-16-en-20-one , 3-methoxy-7,11,18-triacetoxy- , 17-Pentatriacontene, Phthalic acid , bis(7-methyloctyl) ester, Phthalic acid, di(6-ethyl-3-octyl) ester, Ergosterol, γ-Sitosterol and Friedelan-3-one.


Author(s):  
Abeer Fauzi Al-Rubaye ◽  
Ashwak Falih Kaizal ◽  
Imad Hadi Hameed

The objectives of this study were analysis of the secondary metabolite products and evaluation antibacterial activity. Bioactives are chemical compounds often referred to as secondary metabolites. Thirty six bioactive compounds were identified in the methanolic extract of Malva sylvestris. The identification of bioactive chemical compounds is based on the peak area, retention time molecular weight and molecular formula. GC-MS analysis of Malva sylvestris revealed the existence of the1-Propanamine , 2-methyl-N-(2-methylpropyldene)- , Pyrrolidine,1-(1-oxo-2,5-octadecadienyl)- , Dimethyl sulfoxide , Cyclohexylamine ,N-ethyl- , N-(2-Methylbutylidene)isobutylamine , 1-Methyl-2-pyrrolideethanol , 2-(2-Hydroxyethyl)piperidine , 1-Butanamine , 2-methyl-N-(2-methylbutylidene)- , 4-(Pyrrolidin-2- ylcarbonyl)morpholine , Dithiocarbamate , S-methyl-,N-(2-methyl-3-oxobutyl)- , l-Gala-l-ido-octonic lactone , 1-(5'- methylfurfuryl)pyrrolidine , 2-Methoxy-4-vinylphenol , Pyrrolizin-1,7-dione-6-carboxylic acid , methyl(ester) , 1- Naphthaienol , 1,2,3,4-tetrahydro-2,5,8-trimethyl- , Pterin-6-carboxylic acid , N-(2-Acetamido)iminodiacetic acid , N-(1- Hydroxy-4-oxo-1-phenylperhydroquinolizin-3-yl)carbamic , Cyclopropanedodecanoic acid , 2-octyl-,methyl ester , Cholestan-3-ol,2-methylene-,(3β,5α)- , 3-(N,N-Dimethyllaurylammonio)propanesulfonate , Pyrazole[4,5-b]imidazole , 1-formyl-3-ethyl-6-β-d-ribofuranosyl- , Octahydrobenzo[b]pyran , 4a-acetoxy-5,5,8a-trimethyl- , Tetraacetyl-d-xylonic nitrile , 4,6-Heptadien-3-one,1,7-diphenyl- , Pentanoic acid ,2,2,4-trimethyl-3-carboxyisopropyl , isobutyl ester , DFructose , diethyl mercaptal, pentaacetate , Phytol , Hexadecanamide , Tributyl acetylcitrate , Cholestan-3-one,cyclic 1,2- ethanediyl aetal , (5β)- , Dasycarpidan-1-methanol, acetate ( ester)- , 9-Desoxo-9-x-acetoxy-3,8,12-tri-O-acetylingol , (+)-y-Tocopherol, O-methyl- , Campesterol and Stigmasterol.



2021 ◽  
Vol 11 (12) ◽  
pp. 5413
Author(s):  
Keiko Iwasa ◽  
Harumichi Seta ◽  
Yoshihide Matsuo ◽  
Koichi Nakahara

This paper reports on the chemical compounds in arabica coffee beans with a high Specialty Coffee Association (SCA) cupping score, especially those in specialty coffee beans. We investigated the relationship between the chemical compounds and cupping scores by considering 16 types of Coffea arabica (arabica coffee) beans from Guatemala (SCA cupping score of 76.5–89.0 points). Non-targeted gas chromatography-mass spectrometry-based chemometric profiling indicated that specialty beans with a high cupping score contained considerable amounts of methyl-esterified compounds (MECs), including 3-methylbutanoic acid methyl ester (3-MBM), and other fatty acid methyl esters. The effect of MECs on flavor quality was verified by spiking the coffee brew with 3-MBM, which was the top-ranked component, as obtained through a regression model associated with cupping scores. Notably, 3-MBM was responsible for the fresh-fruity aroma and cleanness of the coffee brew. Although cleanness is a significant factor for specialty beans, the identification of compounds that contribute to cleanness has not been reported in previous research. The chemometric profiling approach coupled with spiking test validation will improve the identification and characterization of 3-MBM commonly found in arabica specialty beans. Therefore, 3-MBM, either alone or together with MECs, can be used as a marker in coffee production.



Author(s):  
Israa Adnan Ibraheam ◽  
Mohammed Yahya Hadi ◽  
Imad Hadi Hameed

The objective of this study was analysis of the secondary metabolite products. Bioactives are chemical compounds often referred to as secondary metabolites. Sixteenth bioactive compounds were identified in the methanolic extract of Mentha pulegium. The identification of bioactive chemical compounds is based on the peak area, retention time molecular weight and molecular formula. GC-MS analysis of Mentha pulegium revealed the existence of the Erythritol , Cyclohexanone , 3-methyl-,(R)- , 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one , 1-Oxaspiro[2.5]octan-4-one ,2,2,6-trimethyl-, cis- , Terpinyl formate , Acetamide , N-methyl-N-[4-(3-hydroxypyrrolidinyl)-2-butynyl]- , Pulegone , 2-Oxabicyclo[3.3.0]oct-7-en-3-one , 7-(1-hydroxypentyl)- , 2(3H)-Naphthalenone ,4,4a,5,6,7,8-hexahydro-1-methoxy- , 2-Cyclopenten-1-one , 2-(2-butenyl)-4-hydroxy-3-methyl-,(Z)- , (5β)Pregnane-3,20β-diol 14α,18α-[4-methyl-3-oxo-(1-oxa-4- , 2-(4-(But-2-yl)phenyl) propnoic acid , Nootkaton-11,12-epoxide , 2-Heptanone , 6-methyl-6-[3-methyl-3-(1-methylethenyl)-1-cyclo , Cholestan-3-ol , 2-methylene-, (3β,5α)- , 1-Heptatriacotanol and Digitoxin.



Author(s):  
Mohanad Jawad Kadhim ◽  
Abeer Fauzi Al-Rubaye ◽  
Imad Hadi Hameed

The objectives of this study were analysis of the secondary metabolite products and evaluation antibacterial activity. Bioactives are chemical compounds often referred to as secondary metabolites. Thirty three bioactive compounds were identified in the methanolic extract of Vitis vinifera. The identification of bioactive chemical compounds is based on the peak area, retention time molecular weight and molecular formula. GC-MS analysis of Vitis vinifera revealed the existence of the Butanol , 2-nitro , α-D-Glucopyranoside , methyl 3,6-anhydro , Propanedioic acid , amino -, diethyl ester, DL-Arabinose , Hexadecenoic acid, Furfural, 1H-Pyrazole-1-carbothioamide , 3,5-dimethyl- , 2-Furanmethanol , 2(1H) Pyrazinone, o-Acetyl-L-serine , 1-Nitro-2-acetamido-1,2-dideoxy-d-mannitol, 6-Oxa-bicyclo[3.1.0]hexan-3-one , Acetic acid , 2,2'-[oxybis(2,1-ethanediyloxy)]bis- , Desulphosinigrin, D-Glucose , 6-o-α-D-galactopyranosyl-, Cyclohexene , 1-methyl-4-(1-methylethenyl)-,(S)-, -D-Glucopyranoside , O-α-D-glucopyranosyl-(1.fwdarw.3)-β- , 2,5- Dimethyl-4-hydroxy-3(2H)-furanone , Cis-2-Ethyl-2-hexen-1-ol, Maltose , 7-Oxa-2-oxa-7- thiatricyclo[4.4.0.0(3,80]decan-4-ol , 1-Gala-l-ido-octonic lactone , 5-Hydroxymethylfurfural , Cyclohexene-1- methanol,α,α,4-trimethyl-,propanoate , Hydroxymethylfurfural , Octanamide,N-(2-mercaptoethyl)-, 1,2,4-Trioxolane-2- octanoic acid , 5-octyl-,methyl ester, 9-Octadecenoic acid , (2-phenyl-1,3-dioxolan-4-yl)methyl ester 9,10-Secocholesta- 5,7,10(19)-triene-3,24,25-triol,(3β,5Z,7E)-, 13-Heptadecyn-1-ol Hexadecanoic acid , 1-(hydroxymethyl)-1,2- ethanediyl ester, 9-Octadecenamide ,(Z).



2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
O. U. Igwe ◽  
D. E. Udofia

Chemical compounds were extracted with petroleum ether from the cuticular abdominal glands of grasshopper (Zonocerus variegatus L.) and eleven compounds were characterised using Gas Chromatography/Mass Spectrometry (GC/MS) technique in combination with Fourier Transform-Infrared Spectroscopy (FT-IR). The compounds analysed were 2,7-dimethyloctane (3.21%), decane (5.33%), undecane (3.81%), tridecanoic acid methyl ester (4.76%), hexadecanoic acid (9.37%), 11-octadecenoic acid methyl ester (23.18%), pentadecanoic acid, 14-methyl-methyl ester (4.43%), (Z)-13-docosenoic acid (10.71%), dodecyl pentafluoropropionate (9.52%), 2-dodecyl-1,3-propanediol (6.38%), and 1,12-tridecadiene (19.30%). FT-IR analysis of the extract showed peaks at 1270.17 (C–O and C–F), 1641.48 (C=C), 2937.68 (C–H), and 3430.51 (O–H) cm−1 indicating the presence of ether, alkene, alkane, alcohol, carboxylic acid, and fluoric compounds. These compounds consisted of 32.37% ester, 31.65% hydrocarbons, 20.08% fatty acid, 9.52% halogenated ester, and 6.38% alcohol. The highest component was 11-octadecenoic acid methyl ester followed by 1,12-tridecadiene. Since behavioural bioassays were not carried out, the consideration of these compounds to be pheromone semiochemicals remains a hypothesis.



Author(s):  
Jenan Mohammed Ubaid ◽  
Abeer Fauzi Al-Rubaye ◽  
Imad Hadi Hameed

Methanolic extract of bioactive compounds of Trogoderma granarium was assayed. GC-MS analysis of Trogoderma granarium revealed the existence of the Pentanoic acid , 1,1-dimethylpropyl ester , (1H)-Pyrimidinone , 5-chloro-4,6- diphenyl, Cyclobutanemethanol , α-methyl- , Nitro-2-methyl-1,3-propanediol , Hydroxylamine ,O-(2-methylpropyl)- , Uridine , 2',3'-O-(phenylmethylene)- ,Acetic acid ,2-benzoylthio-,2-oxo-2-phenylethyl ester , methylpropyl)- , Uridine , 2',3'-O-(phenylmethylene)- , 5'-(4-methylbenzenesulfo , Indolinol , 1-benzoyl-, Benzeneethanol , β-methyl-,(s)- , Acetic acid ,2-benzoylthio-,2-oxo-2-phenylethyl ester , Phenacyl thiocyanate , Deoxy-L-ribose-2,5-dibenzoate , Methenamine , Alanine , N-methyl-n-propargyloxycarbonyl-, decyl ester , Benzoyl chloride , Thiophene-2-ol , benzoate , Ethanone , -(5- nitrotetrazol-2-yl)-1-phenyl- , 2,5-Dimethylhexane-2,5-dihydroperoxide , Benzamide , N-(3-benzylthio-1,2,4-thiadiazol- 5-yl)- , Methyl p-(2-phenyl-1-benzimidazolyl)benzoate , Methyl-2-phenoxyethylamine , Pentaborane(11) , cis-Methoxy- 5-trans-methyl-1R-cyclohexanol , Nitro-1-phenyl-3-(tetrahydropyran-2-yloxy)propan-1-one , cis-Methoxy-5-transmethyl-1R-cyclohexanol. Trogoderma granarium produce many important secondary metabolites with high biological activities.



2021 ◽  
Author(s):  
Romana Parveen ◽  
Tooba Naz Shamsi ◽  
Sadaf Fatima

AbstractThe methanolic extract of sandalwood (SwME) was prepared by soxhlet apparatus and the antibacterial assay was performed. Further, the metabolite profiling of SwME and lysates of E. coli and E. coli grown in the presence of SwME was generated. SwME showed maximum inhibition against E. coli (MTCC 443) i.e. 82.71%, and minimal against B. subtilis (MTCC 736) i.e. 26.82%. The metabolome profiles of E. coli and SwME were generated using gas chromatography-mass spectrometry (GC-MS) technique. Comparative studies were done to understand to what extent metabolite modifications differ between SwME, E. coli lysate and the E. coli strain grown in presence of extract. Result revealed 23 peaks with major compounds present in E. coli were 9-Octadecenoic Acid (Z)-, Methyl Ester (26.85%), Hexadecanoic Acid, methyl ester (20.5%) and Hexadecanoic acid, trimethylsilyl ester (15.79%). When E. coli was grown in the presence of SwME, GC-MS analysis showed 25 peaks with major compounds such as 9-Octadecenoic Acid, Methyl Ester (21.97%), Hexadecanoic Acid, Methyl Ester (17.03%), and Hexadecanoic Acid, Trimethylsilyl Ester (14.96%). Correlating the metabolic profiles with the changes occurring is essential to progression their comprehension and in the development of new approaches to identify the metabolomics regulation in E. coli in response to SwME.



Plant Omics ◽  
2019 ◽  
pp. 70-77
Author(s):  
Reham M. Mostafa ◽  
Heba S. Essawy

Alhagi maurorum (A. maurorum) is one of the medicinally important plants belonging to the family leguminasae, commonly known as camel thorn. This research was amid to identify the chemical compounds in the aerial part of A. maurorum using GC-mass analysis. Three solvents with different polarities were used for the extraction of chemical constituents (water, methanol and petroleum ether). The results of GC-MS analysis led to identification of various compounds. In total, thirty-nine compounds from petroleum ether extract, thirty-two compounds in methanolic extract and seventeen compounds in aqueous extract were identified. Majority of the identified compounds have been reported to possess many biological activities. Among them, we reported 10 new anticancer compounds (Vitamin E; Hexadecanoic acid; Stigmast-5-en-3-ol; Phytol,2-hexadecen-1-ol,3,7,11,15-tetramethyl; Squalene; Hexadecanoic acid; 2-hydroxy-1-(hydroxymethyl) ethyl ester; Oxime,methoxy-phenyl,methyl N-hydroxyben-zenecarboximidoate; Ergost-5-en-3-ol; 9,12- Octadecad-ienoic acid and Farnesol) from A. maurorum using three solvent, while the best effective solvent was petroluem ether. Therefore, we report that A. maurorum has great potential to be developed into anticancer drugs.



BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9555-9568
Author(s):  
Munirah Adibah Kamarul Zaman ◽  
Azzreena Mohamad Azzeme ◽  
Siti Nurhafizah Ramli ◽  
Noor Azmi Shaharuddin ◽  
Syahida Ahmad ◽  
...  

Polyalthia bullata is a woody medicinal plant that contains antioxidant compounds. Finding a suitable solvent is important to obtain a high yield of antioxidants in the phenolic, flavonoid, and terpenoid families. In this study, from different solvent extracts, the leaf methanolic extract exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), total terpenoid content (TTC), and total antioxidant activity. For woody parts of stem and roots, methanol was the best solvent for all phytochemicals except for phenolics, which accumulated in the roots and were extracted more efficiently using ethanol. However, the methanolic extracts from both tissues displayed the best antioxidant capacity. Gas chromatography-mass spectrometry (GC-MS) profiling data showed the presence of antioxidant compounds such as thymol, phytol, and neophytadiene in the leaf; trans-farnesol, n-hexadecanoic acid, and 9-Octadecenamide in the stem; and fatty acid (cis-vaccenic) and its methyl ester (11-Octadecanoic acid, methyl ester and [1,1’-bicyclopropyl]-2-octanoic acid, 2’-hexyl-methyl ester) in the roots. These findings reveal important compounds that are present in different plant parts of P. bullata.



2020 ◽  
Vol 4 (2) ◽  
pp. 106-118
Author(s):  
Magdalena Saragih ◽  
Trizelia Trizelia ◽  
Nurbailis Nurbailis ◽  
Yusniwati Yusniwati

The aim of this study was to identify the chemical compound methanol extract of entomopathogenic fungus Beauveria bassiana from insect walang sangit and the chemical compound roots of red chili plants that were able to stimulate the growth of chilli plants after being applied with entomopathogenic fungus   B. bassiana through seed immersion inoculation using GCMS method. The chemical compound identified as a growth booster in   B. bassiana fungus isolates from the insect walang sangit is an Acetic acid Ethanoic acid Ethylic acid Glacial acetic acid CH3COOH, Hexadecanoic acid, methyl ester (CAS) Methylpalmitate Uniphat A60, n-Hexadecanoic acid Hexadecanoic acid n-Hexadecoic acid Palmitic acid, Dianhydromannitol and Ergosta-5,7,22-trien-3-ol, (3.beta., 22E) - (CAS) Ergosterol (CAS), while the chili root contains Acetic acid Ethanoic acid Ethylic acid Glacials acetic acid CH3COOH, Hexadecanoic acid, methyl ester (CAS) Methyl palmitate Uniphat A60, n -Hexadecanoic acid Hexadecanoic acid Palmitic acid, 8, 11- octadecadienoic acid, methyl ester (CAS) METHYL 8, 11-OCTADECADIENOATE, (23S)-ethylcholest-5-en-3.beta.-ol.s It can be concluded that some of the chemical compounds in methanol extracts identified in chili roots have similarities with chemical compounds that exist in   B. bassiana entomopathogenic fungus which are potential as stimulers of chili plant growth



Sign in / Sign up

Export Citation Format

Share Document