scholarly journals Parasellar T2 dark sign on magnetic resonance imaging to differentiate lymphocytic hypophysitis from pituitary adenoma

2020 ◽  
Vol 11 ◽  
pp. 239
Author(s):  
Amit Agarwal ◽  
Girish Bathla

Background: Pituitary adenomas are the most common sellar masses in adults with magnetic resonance imaging (MRI) being the imaging modality of choice. Inflammatory pituitary lesions such as lymphocytic hypophysitis (LH) can mimic pituitary macroadenoma on imaging and are often misdiagnosed as such. Although the imaging appearance on most of the sequences on MRI has similar findings, LH has a characteristic dark signal on T2 images (called dark T2 sign) which can be very helpful to reliably differentiate the two conditions. Case Description: A 68-year-old woman diagnosed with a “pituitary mass” on the MR study done at an outside facility was referred to our neurosurgery department. The case was discussed at our multidisciplinary tumor board, where the possibility of an inflammatory condition mimicking tumor was considered, given the very dark signal on T2-weighted sequences. Transsphenoidal endoscopic biopsy revealed a firm rubbery mass, which histopathology demonstrated fibrous connective tissue with inflammatory cells consistent with LH. Conclusion: Dark T2 signal on MR imaging can be very helpful in demarcating inflammatory pituitary conditions like LH from pituitary macroadenomas.

2013 ◽  
Vol 119 (6) ◽  
pp. 1461-1466 ◽  
Author(s):  
Charles H. Cho ◽  
Garni Barkhoudarian ◽  
Liangge Hsu ◽  
Wenya Linda Bi ◽  
Amir A. Zamani ◽  
...  

Object Identification of the normal pituitary gland is an important component of presurgical planning, defining many aspects of the surgical approach and facilitating normal gland preservation. Magnetic resonance imaging is a proven imaging modality for optimal soft-tissue contrast discrimination in the brain. This study is designed to validate the accuracy of localization of the normal pituitary gland with MRI in a cohort of surgical patients with pituitary mass lesions, and to evaluate for correlation between presurgical pituitary hormone values and pituitary gland characteristics on neuroimaging. Methods Fifty-eight consecutive patients with pituitary mass lesions were included in the study. Anterior pituitary hormone levels were measured preoperatively in all patients. Video recordings from the endoscopic or microscopic surgical procedures were available for evaluation in 47 cases. Intraoperative identification of the normal gland was possible in 43 of 58 cases. Retrospective MR images were reviewed in a blinded fashion for the 43 cases, emphasizing the position of the normal gland and the extent of compression and displacement by the lesion. Results There was excellent agreement between imaging and surgery in 84% of the cases for normal gland localization, and in 70% for compression or noncompression of the normal gland. There was no consistent correlation between preoperative pituitary dysfunction and pituitary gland localization on imaging, gland identification during surgery, or pituitary gland compression. Conclusions Magnetic resonance imaging proved to be accurate in identifying the normal gland in patients with pituitary mass lesions, and was useful for preoperative surgical planning.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Heon Kim ◽  
Hong J. Lee ◽  
Yun Seob Song

A reliablein vivoimaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cellsin vivoin the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Abeer Abd El Maksoud Hafez ◽  
Tarek Wahby Hameda ◽  
Ghadier Ibrahim Attia

Abstract Background Magnetic resonance is the best imaging modality to assess hip joint in non-traumatic cases. It has a great ability to diagnose disorders of bone, cartilage, ligaments, muscles and soft tissue. MRI can also detect joint effusion and bone marrow edema. Aim of the Work: To assess the value of MRI as the imaging modality in children presenting with acute non-traumatic hip pain and its ability to assess the cause of the pain early without the use of another imaging modality. Patients and Methods A retrospective study was conducted on pediatric patients with non-traumatic hip pain, referred from the outpatient pediatric clinic, orthopedic clinic, Ain Shams University hospitals. The patients were investigated using magnetic resonance imaging (MRI) for detection the cause of non-traumatic hip pain. Results In this study we found that avascular necrosis is the commonest cause of non-traumatic hip pain followed by isolated hip effusion then synovitis. Other causes included perthes, septic arthritis, osteomyelitis, aneurysmal bone cyst, SCFE, PFFD and Osteomalacia. Magnetic resonance imaging doesn’t only demonstrate disorders of hip joint only; it also gives an accurate assessment of other extra-articular causes of referred hip pain. Conclusion Hip MRI is a practical, well accepted and accurate non-invasive imaging technique in children presenting with acute non-traumatic hip pain.


2004 ◽  
Vol 12 (3) ◽  
pp. 238-243 ◽  
Author(s):  
Elisa Emi Tanaka ◽  
Emiko Saito Arita ◽  
Bunji Shibayama

Occlusal stabilization appliances or splints are the most widely employed method for treatment of temporomandibular disorders (TMD). Magnetic Resonance Imaging (MRI) is the most indicated imaging modality to evaluate the components of the temporomandibular joint (TMJ). Forty patients with signs and symptoms of temporomandibular disorders were treated with splints for a mean period of 12 months, comprising regular semimonthly follow-ups. After stabilization of the clinical status, occlusal adjustments and MRI evaluation were performed. It was concluded that the success of this kind of treatment are related to the total (70%) or partial improvement (22.5%) of painful symptomatology and to the functional reestablishment of the craniomandibular complex. The MRI allowed evaluation and also the conclusion that the splints provide conditions for the organism to develop means to resist to the temporomandibular disorders by means of elimination of several etiologic factors. Moreover, after treatment the patients are able to cope with disc displacements with larger or smaller tolerance.


2013 ◽  
Vol 16 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Y. Zhalniarovich ◽  
Z. Adamiak ◽  
A. Pomianowski ◽  
M. Jaskólska

Abstract Magnetic resonance imaging is the best imaging modality for the brain and spine. Quality of the received images depends on many technical factors. The most significant factors are: positioning the patient, proper coil selection, selection of appropriate sequences and image planes. The present contrast between different tissues provides an opportunity to diagnose various lesions. In many clinics magnetic resonance imaging has replaced myelography because of its noninvasive modality and because it provides excellent anatomic detail. There are many different combinations of sequences possible for spinal and brain MR imaging. Most frequently used are: T2-weighted fast spin echo (FSE), T1- and T2-weighted turbo spin echo, Fluid Attenuation Inversion Recovery (FLAIR), T1-weighted gradient echo (GE) and spin echo (SE), high-resolution three-dimensional (3D) sequences, fat-suppressing short tau inversion recovery (STIR) and half-Fourier acquisition single-shot turbo spin echo (HASTE). Magnetic resonance imaging reveals neurologic lesions which were previously hard to diagnose antemortem.


2021 ◽  
Vol 8 ◽  
Author(s):  
Silke Hecht ◽  
Kimberly M. Anderson ◽  
Aude Castel ◽  
John F. Griffin ◽  
Adrien-Maxence Hespel ◽  
...  

Computed tomography (CT) is the imaging modality of choice to evaluate patients with acute head trauma. However, magnetic resonance imaging (MRI) may be chosen in select cases. The objectives of this study were to evaluate the agreement of MRI with CT in the assessment for presence or absence of acute skull fractures in a canine and feline cadaver model, compare seven different MRI sequences (T1-W, T2-W, T2-FLAIR, PD-W, T2*-W, “SPACE” and “VIBE”), and determine agreement of four different MRI readers with CT data. Pre- and post-trauma CT and MRI studies were performed on 10 canine and 10 feline cadaver heads. Agreement of MRI with CT as to presence or absence of a fracture was determined for 26 individual osseous structures and four anatomic regions (cranium, face, skull base, temporomandibular joint). Overall, there was 93.5% agreement in assessing a fracture as present or absent between MRI and CT, with a significant difference between the pre and post trauma studies (99.4 vs. 87.6%; p < 0.0001; OR 0.042; 95% CI 0.034–0.052). There was no significant difference between dogs and cats. The agreement for the different MRI sequences with CT ranged from 92.6% (T2*-W) to 94.4% (PD-W). There was higher agreement of MRI with CT in the evaluation for fractures of the face than other anatomic regions. Agreement with CT for individual MRI readers ranged from 92.6 to 94.7%. A PD-W sequence should be added to the MR protocol when evaluating the small animal head trauma patient.


1987 ◽  
Vol 5 (10) ◽  
pp. 1663-1669 ◽  
Author(s):  
C Hagenau ◽  
W Grosh ◽  
M Currie ◽  
R G Wiley

Spinal involvement by systemic malignancy is common, and often leads to extradural compression of the spinal cord and/or nerve roots by metastases. Rapid, anatomically accurate diagnosis is essential to the successful management of these patients. We compared spinal magnetic resonance imaging (MRI) with conventional myelography in a series of 31 cancer patients being evaluated for myelopathy (N = 10), or back/radicular pain (N = 21). All patients were evaluated between April 1985 and July 1986, and underwent both studies within ten days of each other (median, two days). MRI was performed on a 0.5 Tesla Technicare unit with a body surface coil, and results compared with standard contrast myelography. All studies were reviewed separately and in a "blinded" fashion. MRI and myelography were comparable in detecting large lesions that produced complete subarachnoid block (five of ten patients with myelopathy, three of twenty-one patients with back/radicular pain). In 19 of 31 patients, smaller but clinically significant extradural lesions were found. In nine of 19 cases, these lesions were demonstrated equally well by both modalities; in nine of 19 cases, these lesions were demonstrated by myelography alone; in one of 19, a lesion was demonstrated by MRI alone. Given our current technology, myelography appeared superior to MRI as a single imaging modality. However, MRI may be an alternative in patients where total myelography is technically impossible or unusually hazardous.


Sign in / Sign up

Export Citation Format

Share Document