scholarly journals DER ABBAU VON P-HYDROXYBENZOESAURE, PROTOCATECHUSAURE UND GALLUSSAURE IM BODEN

Author(s):  
Christian Kunze

The rate of decomposition of the three phenolic acids, p-hydroxybenzoic acid, protocatechuic acid and gallic acid, whose difference is the amount of OH-groups, was investigated in the soil. With the increase in OH-groups increases the rate of microbial decomposition. Gallic acid decomposes faster than protocatecuic acid and this again faster than p-hydroxybenzoic acid.

2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Nguyen Quang Hung ◽  
Nguyen Thi Luyen ◽  
Nguyen The Cuong ◽  
Tran Huy Thai ◽  
Nguyen Thanh Tung ◽  
...  

A rare noriridoid and six known phenolic compounds were isolated from the parasite plant Rhopalocnemis phalloides. Using spectroscopic methods, these compounds were identified as 10-acetoxy- cis-2-oxabicyclo[4.3.0]nonan-7-en-3-one (1), p-hydroxybenzoic acid (2), protocatechuic acid (3), gallic acid (4), coniferyl aldehyde (5), l- O-trans-cinnamoyl-β-D-glucoside (6), and coniferin (7). The noriridoid compound is the first reported from the family Balanophoraceae. Of the isolated compounds, coniferyl aldehyde had the strongest inhibitory effect on nitric oxide production (IC50 = 8.24 μM).


2020 ◽  
Author(s):  
Prince A Fordjour ◽  
Jonathan P Adjimani ◽  
Bright Asare ◽  
Nancy O Duah-Quashie ◽  
Neils B Quashie

Abstract Background In the absence of an effective vaccine against malaria, chemotherapy remains a major option in the control of the disease. Then, the recent report of the emergence and spread of clones of Plasmodium falciparum resistant to available antimalarial drugs should be of concern as it poses a threat to disease control. Compounds whose pharmacological properties have been determined and touted for other disease can be investigated for antimalarial activity. Phenolic acids (polyphenols) have been reported to exhibit antioxidant, anticancer, anti-inflammatory, antiviral and antibiotic effects. However, information on their antimalarial activity is scanty. Phenolic acids are present in a variety of plant-based foods: mostly high in the skins and seeds of fruits as well as the leaves of vegetables. Systematic assessment of these compounds for antimalarial activity is therefore needed. Method Using the classical in vitro drug test, the antimalarial activities of five hydroxycinnamic acids, (caffeic acid, rosmarinic acid, chlorogenic acid, o-Coumaric acid and ferulic acid) and two hydroxybenzoic acids (gallic acid and protocatechuic acid) against 3D7 clones of Plasmodium falciparum was determined. Results Among the phenolic acids tested, caffeic acid and gallic acid were found to be the most effective, with mean IC 50 value of 17.73µg/ml and 26.59µg/ml respectively for three independent determinations. Protocatechuic acid had an IC 50 value of 30.08 µg/ml. Rosmarinic acid and chlorogenic acid, showed moderate antimalarial activities with IC 50 values of 103.59µg/ml and 105µg/ml respectively. The IC 50 values determined for ferulic acid and o-Coumaric acid were 93.36µg/ml and 82.23µg/ml respectively. Conclusion The outcome of this study suggest that natural occurring phenolic compounds have appreciable level of antimalarial activity which can be exploited for use through combination of actions/efforts including structural manipulation to attain an increase in their antimalarial effect. Eating of natural food products rich in these compounds could provide antimalarial prophylactic effect.


1957 ◽  
Vol 3 (6) ◽  
pp. 847-862 ◽  
Author(s):  
C. F. van Sumere ◽  
C. van Sumere-de Preter ◽  
L. C. Vining ◽  
G. A. Ledingham

A paper chromatographic method suitable for identification of the small amounts of coumarins and phenolic acids present in the uredospores of wheat stem rust was developed. By the use of the circular technique and a combination of three different solvent systems an adequate separation of all the substances was achieved. A preliminary development of the chromatogram with a solvent in which the test compounds were non-mobile facilitated identification and avoided the need for extensive preliminary fractionation of the extracts.Using this method the following compounds were identified in spore extracts: coumarin, umbelliferone, daphnetin, aesculetin, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, o-coumaric acid, p-coumaric acid, ferulic acid, and caffeic acid; coumarin, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, o-coumaric acid, and ferulic acid were also present as glycosides; in addition scopoletin, gallic acid, syringic acid, and sinapic acid were detected after hydrolysis and are assumed to be present only in a bound form.In order to obtain some information about the role of these substances in the physiology of wheat stem rust, uredospores were germinated by being floated en masse on dilute aqueous solutions. Of the compounds tested, indoleacetic acid, coumarin, o-coumaric acid, protocatechuic acid, umbelliferone, and daphnetin gave a marked stimulation of germination at concentrations of 10–200 μg./ml. Caffeic acid, vanillic acid, p-hydroxybenzoic acid, ferulic acid, and ferulic acid β-glucoside had little effect or were strongly inhibitory.The stimulation of germination is attributed to the counteraction of a self-inhibitor released from the spores, and the possible significance of the compounds on the physiology of the rust and the host–parasite relationship is discussed.


RSC Advances ◽  
2014 ◽  
Vol 4 (95) ◽  
pp. 52647-52657 ◽  
Author(s):  
Nishi Srivastava ◽  
Amit Srivastava ◽  
S. Srivastava ◽  
A. K. S. Rawat ◽  
A. R. Khan

We developed a HPTLC method for the quantification of vanillic acid, syringic acid, gallic acid and protocatechuic acid and kinetic studies on antioxidant potential in Bergenia ciliata and Bergenia stracheyi.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Aimee N. Winter ◽  
Matthew C. Brenner ◽  
Noelle Punessen ◽  
Michael Snodgrass ◽  
Caleb Byars ◽  
...  

Anthocyanins are being increasingly investigated for their neuroprotective and antineuroinflammatory effects; however, the overall bioavailability of many anthocyanins is relatively low. In contrast, phenolic acids, metabolites of many polyphenols, including anthocyanins, have been shown to accumulate in tissue at higher concentrations than those of parent compounds, suggesting that these metabolites may be the bioactive components of anthocyanin-rich diets. We examined the neuroprotective capacity of two common phenolic acids, 4-hydroxybenzoic acid (HBA) and protocatechuic acid (PCA), in primary cultures of cerebellar granule neurons. Both HBA and PCA are capable of mitigating oxidative stress induced by hydrogen peroxide, which is thought to contribute to neuronal cell death in neurodegeneration. Under conditions of nitrosative stress, which occur during inflammation in the central nervous system, only PCA was neuroprotective, despite similar structural characteristics between HBA and PCA. Intriguingly, this trend was reversed under conditions of excitotoxicity, in which only HBA was neuroprotective. Lastly, we explored the anti-inflammatory activity of these compounds in microglial cells stimulated with lipopolysaccharide. PCA was an effective anti-inflammatory agent, reducing nitric oxide production, while HBA had no effect. These data indicate that phenolic acids possess distinct neuroprotective and anti-inflammatory characteristics that could make them suitable for the treatment of neurodegeneration.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3574
Author(s):  
Thammarat Aree

Protocatechuic aldehyde (PCAL) and protocatechuic acid (PCAC) are catechol derivatives and have broad therapeutic effects associated with their antiradical activity. Their pharmacological and physicochemical properties have been improved via the cyclodextrin (CD) encapsulation. Because the characteristics of b-CD inclusion complexes with PCAL (1) and PCAC (2) are still equivocal, we get to the bottom of the inclusion complexation by an integrated study of single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that PCAL and PCAC are nearly totally shielded in the b-CD wall. Their aromatic rings are vertically aligned in the b-CD cavity such that the functional groups on the opposite side of the ring (3,4-di(OH) and 1-CHO/1-COOH groups) are placed nearby the O6–H and O2–H/O3–H rims, respectively. The preferred inclusion modes in 1 and 2 help to establish crystal contacts of OH×××O H-bonds with the adjacent b-CD OH groups and water molecules. By contrast, the DFT-optimized structures of both complexes in the gas phase are thermodynamically stable via the four newly formed host–guest OH⋯O H-bonds. The intermolecular OH×××O H-bonds between PCAL/PCAC 3,4-di(OH) and b-CD O6–H groups, and the shielding of OH groups in the b-CD wall help to stabilize these antioxidants in the b-CD cavity, as observed in our earlier studies. Moreover, PCAL and PCAC in distinct lattice environments are compared for insights into their structural flexibility.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Helena Abramovič ◽  
Blaž Grobin ◽  
Nataša Poklar Ulrih ◽  
Blaž Cigić

Trolox, gallic acid, chlorogenic acid, caffeic acid, catechin, epigallocatechin gallate, and ascorbic acid are antioxidants used as standards for reaction with chromogenic radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH⋅) and 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS⋅+), and Folin–Ciocalteu (FC) reagent. The number of exchanged electrons has been analyzed as function of method and solvent. A majority of compounds exchange more electrons in FC assay than in ABTS and DPPH assays. In reaction with chromogenic radicals, the largest number of electrons was exchanged in buffer (pH 7.4) and the lowest reactivity was in methanol (DPPH) and water (ABTS). At physiological pH, the number of exchanged electrons of polyphenols exceeded the number of OH groups, pointing to the important contribution of partially oxidized antioxidants, formed in the course of reaction, to the antioxidant potential. For Trolox, small impact on the number of exchanged electrons was observed, confirming that it is more suitable as a standard compound than the other antioxidants.


1964 ◽  
Vol 19 (9) ◽  
pp. 781-783 ◽  
Author(s):  
Hans Grisebach ◽  
Karl-Otto Vollmer

Further investigations on the biosynthesis of benzoic acids in Gaultheria procumbens L. have shown that besides salicylic acid all the other benzoic acids (gentisinic acid, p-hydroxybenzoic acid, protocatechuic acid, o-pyrocatechuic acid(?), syringic acid and vanillinic acid) can be formed from cinnamic acid. In the case of vanillinic acid it was proved that the total activity is located in the carboxyl group when cinnamic acid-[3-14C] is the precursor.Formiat-14C is incorporated into the methylester group of methylsalicylate.


Sign in / Sign up

Export Citation Format

Share Document