scholarly journals Pengaruh pH dan Metabolisme Bakteri Escherichia coli dalam Reaktor Microbial Fuel Cell Terhadap Reduksi Kromium Heksavalen

2019 ◽  
Vol 2 (2) ◽  
pp. 83
Author(s):  
Prapti Ira Kumalasari ◽  
Junety Monde ◽  
Zefanya Bernadi Yusuf ◽  
Rini Rini

<p class="PageNumber1">Kalimantan merupakan pulau yang terkenal akan sektor  pertambangan salah satunya di daerah delta Mahakam, yang dalam proses eksploitasinya berpotensi menghasilkan limbah logam berat, seperti logam berat Cr<sup>6+</sup>. Pencemaran logam Cr<sup>6+</sup> cukup sulit untuk terurai dilingkungan dan bersifat karsinogenik, karena dengan konsentrasi kecil saja dapat menimbulkan tingkat keracunan yang sangat tinggi pada makhluk hidup, sehingga pengolahan terhadap limbah tersebut sangat penting. <em>Microbial Fuel Cell</em> merupakan suatu metode yang dapat membantu proses pengolahan limbah dengan cara mereduksi Cr<sup>6+</sup> menjadi Cr<sup>3+</sup> dengan katalisis mikrobiologis. Penelitian ini menggunakan metode reaktor <em>double-chamber</em> yaitu terdapat ruang anoda yang berisi bakteri anaerob dan <em>basic anolyte</em>, sedangkan pada ruang katoda terdapat kalium dikromat dengan konsentrasi 18 mg/L dan variasi pH 3, 4 dan 5 yang dilakukan selama 10 hari. Kondisi pH optimum pada proses reduksi terjadi pada pH 4 dengan besar persen penurunan sekitar 98%. Dan produksi listrik tertinggi pada hari ke-2 pada variasi pH 3 dengan nilai power density sebesar sebesar 11, 06 mW/m<sup>2</sup>.</p>

Green ◽  
2013 ◽  
Vol 3 (3-4) ◽  
Author(s):  
Ravi Shankar ◽  
Prasenjit Mondal ◽  
Shri Chand

AbstractIn the present paper steady state models of a double chamber glucose glutamic acid microbial fuel cell (GGA-MFC) under continuous operation have been developed and solved using Matlab 2007 software. The experimental data reported in a recent literature has been used for the validation of the models. The present models give prediction on the cell voltage and cell power density with 19–44% errors, which is less (up to 20%) than the errors on the prediction of cell voltage made in some recent literature for the same MFC where the effects of the difference in pH and ionic conductivity between anodic and cathodic solutions on cell voltage were not incorporated in model equations. It also describes the changes in anodic and cathodic chamber temperature due to the increase in substrate concentration and cell current density. Temperature profile across the membrane thickness has also been studied.


2019 ◽  
Vol 81 (7) ◽  
pp. 1336-1344 ◽  
Author(s):  
Zia Ullah ◽  
Sheikh Zeshan

Abstract The microbial fuel cell (MFC) provides new opportunities for energy generation and wastewater treatment through conversion of organic matter into electricity by electrogenic bacteria. This study investigates the effect of different types and concentrations of substrates on the performance of a double chamber microbial fuel cell (DCMFC). Three mediator-less laboratory-scale DCMFCs were used in this study, which were equipped with graphite electrode and cation exchange membrane. The MFCs were fed with three different types of substrates (glucose, acetate and sucrose) at a chemical oxygen demand (COD) concentration of 1,000 mg/L. The selected substrate (acetate) was studied for three different concentrations of 500, 2,000 and 3,000 mg/L of COD. Results demonstrated that acetate was the best substrate among the three different substrates with maximum power density and COD removal of 91 mW/m2 and 77%, respectively. Concentration of 2,000 mg/L was the best concentration in terms of performance with maximum power density and COD removal of 114 mW/m2 and 79%, respectively. The polarization curve shows that ohmic losses were dominant in DCMFCs established for all three substrates and concentrations.


2017 ◽  
Vol 13 (18) ◽  
pp. 242
Author(s):  
Adegunloye D. V ◽  
Olotu T. M

Generating electricity using microbial fuel cell powered by benthic mud collected from two locations in Akure was carried out. The locations were Riverbed of FUTA and Apatapiti area of Akure. This was achieved by building anode and cathode containers connected together by a salt bridge and an external circuit was made to transfer the electrons from the anode to the cathode. Bacteria and fungi were isolated from the benthic mud for eight days using standard microbiological techniques. Lactobacillus plantarum, Escherichia coli, Bacillus subtilis, Enterobacter aerogenes, Trichoderma sp, Mucor sp and Alterania sp; Lactobacillus plantarum, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Myrothecium sp and Geotrichum candidum were bacteria and fungi isolated from the benthic mud of Apatapiti area and Riverbed of Futa, Akure respectively. This was used for the generation of electricity using unsterilized mud sample and the control setup was sterilized mud from same source. The set-up was monitored every 24hrous to determine the voltage and current generated. The pH, concentration and temperature were measured. The temperature remains constant throughout the experiment. The set-up were operated at a normal temperature of 27oC and 29oC for Riverbed of FUTA and Apatapiti area of Akure respectively. The peak voltage was between 182.5V and 192.5V and current produced from the main set-up was between 0.3A to 0.53A for Futa river bed while for Apatapiti area of Akure the peak voltage and current were 192.5V and 0.3A respectively. Higher microbial population, current and voltage were observed to be generated in River bed of Futa than Apatapiti area. The difference in the voltage and current and the control set-up shows that anaerobic microorganisms are capable of producing electricity from microbial fuel cell under appropriate conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jian-sheng Huang ◽  
Ping Yang ◽  
Chong-ming Li ◽  
Yong Guo ◽  
Bo Lai ◽  
...  

In order to study the effect of nitrite and nitrate on the performance of microbial fuel cell, a system combining an anaerobic fluidized bed (AFB) and a microbial fuel cell (MFC) was employed for high-strength nitrogen-containing synthetic wastewater treatment. Before this study, the AFB-MFC had been used to treat high-strength organic wastewater for about one year in a continuous flow mode. The results showed that when the concentrations of nitrite nitrogen and nitrate nitrogen were increased from 1700 mg/L to 4045 mg/L and 545 mg/L to 1427 mg/L, respectively, the nitrite nitrogen and nitrate nitrogen removal efficiencies were both above 99%; the COD removal efficiency went up from 60.00% to 88.95%; the voltage was about 375 ± 15 mV while the power density was at 70 ± 5 mW/m2. However, when the concentrations of nitrite nitrogen and nitrate nitrogen were above 4045 mg/L and 1427 mg/L, respectively, the removal of nitrite nitrogen, nitrate nitrogen, COD, voltage, and power density were decreased to be 86%, 88%, 77%, 180 mV, and 17 mW/m2 when nitrite nitrogen and nitrate nitrogen were increased to 4265 mg/L and 1661 mg/L. In addition, the composition of biogas generated in the anode chamber was analyzed by a gas chromatograph. Nitrogen gas, methane, and carbon dioxide were obtained. The results indicated that denitrification happened in anode chamber.


Sign in / Sign up

Export Citation Format

Share Document