scholarly journals Korelasi Kuat Lentur Beton Dengan Kuat Tekan Beton

2018 ◽  
Vol 18 (2) ◽  
pp. 43-54
Author(s):  
Anggi Suryani ◽  
Sri Hartati Dewi ◽  
Harmiyati Harmiyati

[ID] Penggunaan konstruksi beton diminati karena beton memiliki sifat-sifat yang menguntungkan seperti ketahanannya terhadap api, awet, kuat tekan yang tinggi dan dalam pelaksanaannya mudah untuk dibentuk sesuai dengan bentuk yang dikehendaki. Tetapi konstruksi beton juga mempunyai kelemahan-kelemahan antara lain kemampuan menahan kuat lentur yang rendah sehingga konstruksinya mudah retak jika mendapatkan regangan lentur. Hal ini menjadikan pengujian kuat lentur beton sebagai persyaratan dalam penerimaan hasil pekerjaan. Namun disisi lain dalam hal pembuatan campuran beton yang selama ini mengacu pada kuat tekan, menjadi tantangan bagi pelaksana yang harus melakukan perencanaan beton (mix design) dan trial mix terlebih dahulu, sehingga perlu dilakukan pengkoreksian. Sehingga penelitian ini bermaksud untuk memperoleh hasil kuat lentur dan kuat tekan beton dengan menghasilkan nilai korelasi kuat lentur beton terhadap kuat tekan beton sesuai kuat lentur dan kuat tekan yang direncanakan maupun disyaratkan. Penelitian ini menggunakan metode Departemen of Environment (DoE) dalam SNI 03-2834-2000 untuk mix design beton. Perencanaan mutu beton K-500 dan kuat lentur rencana fs = 45 kg/ (4,4 MPa) dengan penggunaan bahan tambah superplaticizer 0,5% merk TanCem 20 RA dengan benda uji balok, silinder, dan kubus, dengan slump rencana 30-60 mm. hasil penelitian bahwa pada perawatan 14 dan 28 hari diperoleh hasil pengaruh terhadap beton tanpa superplaticizer 0,5% dengan beton penggunaan bahan tambahan superplaticizer 0,5% terjadi peningkatan pada perawatan 14 hari dengan benda uji balok sebesar 3,26% dan kubus sebesar 22,25%. Peningkatan pada perawatan 28 hari benda uji balok sebesar 3,36%, silinder sebesar 8,09% dan kubus sebesar 7,56%. Terjadi penurunan pada perawatan 14 hari dengan benda uji silinder sebesar 3,21%. Hasil korelasi kuat lentur dengan kuat tekan beton benda uji balok dan silinder, dari hasil mendapatkan nilai korelasi pada perawatan 14 hari tanpa dan dengan tambahan zat addiktif superplaticizer 0,5% didapat persamaan bahwa fs = K√f'c : nilai K sebesar 0,96 dan 0,87, sedangkan pada perawatan 28 hari tanpa dan dengan tambahan zat addiktif superplaticizer 0,5% didapat persamaan bahwa fs = K√f'c : nilai K sebesar 0,86 dan 0,99, maka dapat disimpulkan dari hasil penelitian ini nilai korelasi kuat lentur beton dengan kuat tekan beton bahwa berhubungan sangat kuat yang mana nilai koefisien korelasi di antara 0,80 sampai 1,00. [EN] The use of concrete construction is desirable because concrete has beneficial properties such as resistance to fire, durability, high compressive strength and in its implementation it is easy to be formed in accordance with the desired shape. But concrete construction also has weaknesses such as the ability to hold low flexural strength so that the construction is easily cracked if it gets a flexible strain. This makes testing the flexural strength of concrete as a requirement in receiving work results. But on the other hand in terms of making concrete mixes which have been referring to compressive strength, it is a challenge for implementers who have to do concrete planning (mix design) and trial mix first, so correction is necessary. So that this study intends to obtain the results of flexural strength and compressive strength of concrete by producing a correlation value of the flexural strength of the concrete to the compressive strength of the concrete according to the flexural strength and compressive strength planned or required. This study uses the Department of Environment (DoE) method in SNI 03-2834-2000 for concrete mix design. Planning the quality of K-500 concrete and planned flexural strength fs = 45 kg / cm ^ 2 (4.4 MPa) with the use of added ingredients 0.5% superplaticizer TanCem 20 RA brands with beam specimens, cylinders and cubes, with slump plans 30-60 mm. The results of the study showed that the treatment of 14 and 28 days obtained the effect of concrete without a 0.5% superplaticizer with concrete using 0.5% superplaticizer was increased in 14 days treatment with beam specimens of 3.26% and cube of 22, 25%. The increase in the 28-day treatment of beam specimens was 3.36%, cylinders were 8.09% and cubes were 7.56%. There was a decrease in 14-day treatment with cylindrical specimens of 3.21%. The results of the correlation of flexural strength with concrete compressive strength of beam and cylinder specimens, from the results of obtaining a correlation value on treatment 14 days without and with additional additives 0.5% superplaticizer obtained the equation that fs = K√f'c: K value of 0 96 and 0.87, while the 28-day treatment without and with additional additives of 0.5% superplaticizer obtained the equation that fs = K√f'c: K value of 0.86 and 0.99, it can be concluded from the results of the study This correlation value of concrete flexural strength with concrete compressive strength is very strongly related where the correlation coefficient value is between 0.80 to 1.00.

2018 ◽  
Vol 18 (1) ◽  
pp. 49-58
Author(s):  
Roza Mildawati

[ID] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand. [EN] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Julia Widia Nika ◽  
Anisah Anisah ◽  
Rosmawita Saleh

This research aims to utilize green mussel shell waste as a partial replacement for cement by establishing the best temperature that should be used to obtain the chemical substance if the sehell ashes to optimize the chemical substance for replacement of cement. This research replaces 10% of total weight cement with shell ash which has been combusted with a temperature of 700 ° C, 800 ° C and 900 ° C and control concrete. The compressive strength of the concrete plan is 20 MPa. Concrete mix design is 1:2:3. The results of this study indicate with subtitutes 10% semen with green shell ash with temperature 700 ° C, 800 ° C and 900 ° C is 20,53MPa; 16,76 MPa and 19,74 MPa and for control concrete has compressive strength 20,18 MPa. The maximum concrete compressive strength was obtained on the concrete of green shell ash with a combustion temperature of 700 ° C which is 20.53 MPa. In the concrete the green shells ash with a burning temperature above 700 ° C experience a decrease in compressive strength and cannot meet the compressive strength of the plan.


Author(s):  
Nanang Budi Setyawan ◽  
Fredy Kurniawan

Development era of globalization has resulted in increasing number of second-hand goods / waste that its existence can be a problem for life in the future. Many things are done in order to recycle paper cement in order to overcome this problem the existence of waste. One way is to use waste paper to be a part of the building. The purpose of this study, to determine the compressive strength and optimum density. Laboratory experimental method uses a variation of 10%, 20%, 30% and testing conducted in the form of compressive strength and density. From the test results obtained by the result of decrease in the compressive strength and density. In addition cellulose concrete mix design with variations determined that 10%, 20%, 30% resulted in a decrease in the compressive strength of concrete,


2019 ◽  
Vol 9 (2) ◽  
pp. 47-54
Author(s):  
Fepy Supriani ◽  
Mukhlis Islam

Concrete strength is influenced by several variables, among others by its constituent material, mix design, workmanship, and curing. The objective of concrete curing is to maintain the concrete in certain conditions after the dismantling of the formwork hence the optimization of concrete strength can be achieved close to the designed strength. This study aims to determine the effect of concrete curing on its compressive strength. Designed concrete compressivestrength of 20 MPa with slump values of 60-100 mm to be used. The specimens are cube-shaped with 15 cm dimension. Concrete compressive strength tests were conducted at 28 days and 56 days of concrete age. The types of concrete curing consist of 9 variations, i.e., not treated, water immersed and water sprinkling. Optimum 28 days age of compressive strength of concrete obtained from specimens that immersed in fresh water, which was 31,3 MPa. The concretespecimens that were put outdoor without any curing and treatment generates second highest compressive strength value of 28.6 MPa. The 28 days age of concrete compressive strength values cured with water sprinkling with addition of burlap wrapping are still under the compressive strength of uncured concrete. Significant changes to the strength of cured concrete occurred at age of 56 days and uncured concrete strength decreased up to 19%. The optimum increase occurred in concrete cured with burlap sack wrapping and water sprinkling that was conducted routinely for 3 days by 27,84%. With increasing age (durability) the treated concrete has better strength.


2011 ◽  
Vol 189-193 ◽  
pp. 676-679 ◽  
Author(s):  
Chang Jun Ke ◽  
Qin Hu ◽  
Pan Jiang ◽  
Li Zhang

optimized mix proportion of autoclaved cement concrete by orthogonal test, and studied effect of two type fibers for the flexural strength of autoclaved cement concrete by the mix proportion of autoclaved concrete. The results showed, wollastonite and plant fiber were favorable to increasing the flexural strength of autoclaved cement concrete. Content of wollastonite was about 15% of cement mass, and increase amplitude of the flexural strength was more than 40% and the compressive strength slightly increased for autoclaved cement concrete admixed wollastonite. Content of plant fiber was about 1.5% of cement mass, increase amplitude of the flexural strength was more than 20%, but compressive strength change of autoclaved cement concrete was not significant for autoclaved cement concrete admixed plant fiber.


2019 ◽  
Vol 2 (1) ◽  
pp. 61-66
Author(s):  
Abdul Gaus ◽  
Imran Imran ◽  
Chairul Anwar ◽  
Liska Novianti

The Pumice sand is a bright colored butian type, containing foam made from glass-walled bubbles and usually referred to as silicate volcanic glass granules. This pumice sand can be used as a substitute for normal sand as fine aggregate in a mixture of concrete mix. Based on the characteristic test examination, it can be seen that in testing the characteristics of pumice sand to the specifications of normal sand in specific gravity testing and weight testing of quicksand obtained results that are smaller than the specifications of normal sand and absorption tests obtained results greater than specifications on normal sand. The results of the normal sand compressive strength at BN is 250.95 kg /cm2 while the results of the floating sand concrete compressive strength on BPA is 224, 965 kg /cm2. Based on the research it can be concluded that with the same quality of concrete, the quality of K-250 is different in comparison to the compressive strength of concrete in normal sand and pumice sand concrete shows almost the same results. Therefore, more in-depth research is needed regarding the use of pumice sand instead of normal sand in a mixture of concrete mix


2019 ◽  
Vol 2 (1) ◽  
pp. 13-24
Author(s):  
Muhammad Zardi ◽  
Cut Rahmawati ◽  
T Khamarud Azman

Building structure often use concrete as the main structural material, in which the concrete-forming materials such as cement, sand, gravel, water and additives. The aim of study is to investigate the influence of addition of Sika Viscocrete-10 toward concrete compressive strength. Concrete is planned with Water Cement Ratio 0.3. Slump values obtained for normal concrete with maximum aggregate diameter of 25.4 mm is 7.8 cm. The values are in accordance with the slump plan of 7.5 to 10 cm, meanwhile values slump that use Sika Viscocrete-10 as much as 0.5% is 19.5 cm; Sika Viscocrete-10 as much as 1% is 21.9 cm; Sika Viscocrete-10 as much as 1.5% is 23 cm; and Sika Viscocrete-10 as much as 1.8% is 24.7 cm. Based on these test results, the conclusion is addition of Sika Viscocrete-10 is able to enhance the workability value of concrete, so it is easy to work. Concrete mix design using the American Concrete Institute (ACI). Specimens used in this study is a standard concrete cylinder diameter of 150 mm and a height of 300 m, tested after the age of 14 days. Number of test specimens for all treatments is 25 with 5 specimens in each treatment. The average compressive strength of concrete with normal mixture is 295.43 kg/cm2; for concrete with Sika Viscocrete-10 as mush as 0.5% is of 376.50 kg/cm2; Sika Viscocrete-10 as mush as 1% is 452.94 kg/cm2; Sika Viscocrete-10 as mush as 1.5% is 501.63 kg/cm;2 and Sika Viscocrete-10 as mush as 1.8% is 515.78 kg/cm2. Concrete compressive strength greater with increasing percentage of Sika Viscocrete-10.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Abdul Gaus ◽  
Imran Imran ◽  
Liska Novianti

Pumice sand is a bright colored butian type, containing foam made from glass-walled bubbles andusually referred to as silicate volcanic glass granules. This pumice sand can be used as a substitutefor normal sand as fine aggregate in a mixture of concrete mix. Based on the characteristic testexamination, it can be seen that in testing the characteristics of pumice sand to the specificationsof normal sand in specific gravity testing and weight testing of quicksand obtained results thatare smaller than the specifications of normal sand and absorption tests obtained results greaterthan specifications on normal sand. The results of the normal sand compressive strength at BN is250.95 kg /cm2 while the results of the floating sand concrete compressive strength on BPA is224, 965 kg /cm2. Based on the research it can be concluded that with the same quality of concrete,the quality of K-250 is different in comparison to the compressive strength of concrete in normalsand and pumice sand concrete shows almost the same results. Therefore, more in-depth researchis needed regarding the use of pumice sand instead of normal sand in a mixture of concrete mix.


2018 ◽  
Vol 7 (1) ◽  
pp. 19-26
Author(s):  
Rida Respati

In this research, we want to experiment to find out the compressive strength of medium quality concrete K-350 with ingredients added MASTER RHEOBUILD 6, whose function is to accelerate hardening, improve the quality of concrete, reduce water use and increase the value of slump. However, it should be noted that errors in dosages and how to use added ingredients can be detrimental to the quality of concrete. The results of the study show that the addition of 0.25, 0.5 and 0.75 liters per 50 kg of cement can increase the concrete compressive strength. The compressive strength of concrete with the addition of 0.25 liters/50 kg of cement has increased 362.67 kg/cm� from the normal concrete compressive strength of 350.58 kg/cm2. The addition of 0.5 liters/50 kg of cement has increased again to 373.24 kg/cm�, and the addition of 0.75 liters/50 kg of cement has increased the concrete compressive strength to 379.29 kg/cm� of normal concrete. Comparison of compressive strength before and after addition of admixture with an increase of 3.45% in addition of 0.25 liters/50 kg of cement, 6.47% in addition of 0.5 liters/50 kg of cement and 8.19% in addition of 0.75 liters/50 kg of cement.


2016 ◽  
Vol 711 ◽  
pp. 382-389 ◽  
Author(s):  
Taghried Isam Abdel-Magid ◽  
Ogail Mahgoub Osman ◽  
Omer Haider Ibrahim ◽  
Rayan Tarig Mohammed ◽  
Sowaiba Osman Hassan ◽  
...  

In this paper, the effect of seawater on concrete mix was studied. Seawater was fetched from the Red Sea near Port Sudan. Forty eight concrete cubes were prepared using constant water/cement ratio. The first two groups were both mixed with fresh water then cured in fresh water and seawater, respectively. The third and fourth groups were both mixed with seawater but cured in seawater and fresh water, respectively. All four groups were tested for permeability after seven days. Likewise, they were tested after 7, 28 and 90 days for compression strength. Twelve beams and a dozen cylinders were prepared in the same manner and tested after 28 days for both flexural and tension strengths. Slight increase in compressive strength was noticed in specimens mixed with fresh water and cured in seawater at 7 and 90 days, while no vital change was observed at age 28 days. Neither tension strength nor durability were affected with sea water. Nonetheless, flexural strength decreased for those specimens mixed with seawater and cured in fresh water.


Sign in / Sign up

Export Citation Format

Share Document