scholarly journals ANALISA KUAT TEKAN BETON MENGGUNAKAN PASIR APUNG

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Abdul Gaus ◽  
Imran Imran ◽  
Liska Novianti

Pumice sand is a bright colored butian type, containing foam made from glass-walled bubbles andusually referred to as silicate volcanic glass granules. This pumice sand can be used as a substitutefor normal sand as fine aggregate in a mixture of concrete mix. Based on the characteristic testexamination, it can be seen that in testing the characteristics of pumice sand to the specificationsof normal sand in specific gravity testing and weight testing of quicksand obtained results thatare smaller than the specifications of normal sand and absorption tests obtained results greaterthan specifications on normal sand. The results of the normal sand compressive strength at BN is250.95 kg /cm2 while the results of the floating sand concrete compressive strength on BPA is224, 965 kg /cm2. Based on the research it can be concluded that with the same quality of concrete,the quality of K-250 is different in comparison to the compressive strength of concrete in normalsand and pumice sand concrete shows almost the same results. Therefore, more in-depth researchis needed regarding the use of pumice sand instead of normal sand in a mixture of concrete mix.

2019 ◽  
Vol 2 (1) ◽  
pp. 61-66
Author(s):  
Abdul Gaus ◽  
Imran Imran ◽  
Chairul Anwar ◽  
Liska Novianti

The Pumice sand is a bright colored butian type, containing foam made from glass-walled bubbles and usually referred to as silicate volcanic glass granules. This pumice sand can be used as a substitute for normal sand as fine aggregate in a mixture of concrete mix. Based on the characteristic test examination, it can be seen that in testing the characteristics of pumice sand to the specifications of normal sand in specific gravity testing and weight testing of quicksand obtained results that are smaller than the specifications of normal sand and absorption tests obtained results greater than specifications on normal sand. The results of the normal sand compressive strength at BN is 250.95 kg /cm2 while the results of the floating sand concrete compressive strength on BPA is 224, 965 kg /cm2. Based on the research it can be concluded that with the same quality of concrete, the quality of K-250 is different in comparison to the compressive strength of concrete in normal sand and pumice sand concrete shows almost the same results. Therefore, more in-depth research is needed regarding the use of pumice sand instead of normal sand in a mixture of concrete mix


2015 ◽  
Vol 747 ◽  
pp. 226-229
Author(s):  
Irpan Hidayat ◽  
Jemima Devina Halim

Concrete is a mixture of portland cement, fine aggregate, coarse aggregate and water, with or without additives which form a solid mass. The purpose of this study was to find and innovative method of producing concrete mix from solid waste material as alternative. The alternative materials used in concrete mix was fiberglass. Material reduction in the sand on the concrete can decreases the strength until the fiberglass material added and increase the compressive strength on concrete. The composition of fiberglass that used in this study was 0%, 0.5%, 1%, 1.5%, 2%, 2.5%. The methodology used is the design of concrete mix in according to SNI 03-2834-2000. The results are concrete with the addition of EPS can reduce the density and the compressive strength of normal concrete, concrete EPS was added to increase the value of compressive strength fiberglass. The addition of fiberglass in concrete EPS only on the variable of 0.5% - 1% fiberglass, if greater than 1%, the compressive strength of concrete decreased because the material has not homogeneous concrete during mixing. The largest density value of 10% EPS concrete with fiberglass on the concrete test 28 days is the concrete EPS 10% + 0.5% fiberglass by weight of the curing process and the type of 2127.73 MPa and compressive strength are the largest and EPS concrete with compressive strength amounted to 11.277 MPa. The addition of 10% EPS can reduce the compressive strength of concrete at 3.75%. The addition of fiberglass obtained with a percentage of 0.5% - 1% is the most effective additions so as to improve the quality of concrete by 0.74%. Concrete with compressive strength has a curing system which is much better than the non-curing concrete, because concrete experience of concrete hydration reaction process which takes place optimally.


2021 ◽  
Vol 21 (3) ◽  
pp. 129-138
Author(s):  

Normal concrete uses fine aggregate and coarse aggregate with concrete density 2200 kg/m3-2400 kg/m3 with a compressive strength of about 15-40 MPa [1]. The purpose of this study is to determine characteristics of the concrete aggregate and the compressive strength of the concrete design based on the DOE (Department of Environment) method and the SNI Standard. In this research, the use of nugmet shell was varied as follows: 0%, 0,25%, 0,50%, 0,75% and 1% of the cement weight. The results showed that the use of nutmeg shells as a normal concrete affected the specific gravity and the value compressive strength of concrete. The higher the percentage of nutmeg shells, the lower the specific gravity and compressive strength of the concrete. The average value of density to nutmeg shell concrete (NSC) 2254.72 (kg/m3) and normal concrete 2304.32 (kg/m3). The compressive strength of normal concrete is 224.2 kg/cm2 and the nutmeg shell concrete (NSC) the composition of 0.25% and 0.5% obtained by 129.6 kg/cm2 and 140.0 kg/cm2 increases the use of nutmeg shell 0.75% and 1% obtained value ​​of 117.6 kg/cm2 and 118.1 kg/cm2 decreased at the age of 28 days. The compressive strength of normal concrete 22 MPa while the maximum nutmeg shell concrete (NSC) 14 MPa, so it does not meet the quality of normal concrete in general.


2021 ◽  
Vol 3 (3) ◽  
pp. 243-252
Author(s):  
Masril Masril ◽  
Jefry Rizaldo

Plastic Material Plastic waste is a problem that is very often encountered in urban and rural areas. The use of plastic in each year will continue to increase because food and beverage products all use materials made of plastic. However, the plastic in question is plastic that is difficult to contaminate with soil or commonly referred to as inorganic waste, which is difficult to self-destruct. This is what causes the amount of plastic waste to increase.Therefore, to reduce this waste, the volume of this waste is used in the development. Besides, the grain gradation of the aggregate has been determined with the aim of obtaining an increase in the compressive strength of the concrete with the addition of plastic waste. The quality of the concrete to be examined by the authors in this study is fc = 14.5 MPa. In other words, in this study the author tries to compare the compressive strength of concrete between normal concrete and concrete mixed with plastic waste. In this study also used a variation of plastic waste substitution with a ratio of 0%, 5%, 10% to the volume of fine aggregate. For each variation, 2 samples were used which included normal concrete so that the total test object used was 12 tested at 7 days, 14 days and 28 days of concrete.From the results of testing the compressive strength of concrete against normal concrete and mixed concrete with sawdust surian at the age of 28 days, the normal concrete compressive strength is 14.5 MPa, while in the sawdust mixture with a percentage of 5%, the concrete compressive strength is 14.14 MPa. 10% obtained a compressive strength of 17.05 MPa. From this test, it can be concluded that from each of the percentages that are made, the compressive strength increases along with the percentage of the amount of plastic waste added to the concrete mixture. In other words, the greater the percentage of plastic waste used, the higher the compressive strength and quality of the concrete produced.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Vol 1 (1) ◽  
pp. 244-250
Author(s):  
Alina Pietrzak

Abstract Due to a constant increase in generating the amount of sewage waste it is necessary to find an alternative method of its use or disposal. One of such methods can be utilization of sewage sludge in construction materials industry, particularly in concrete technology and other materials based on cement. It allows using waste materials as a passive additive (filler) or also as an active additive (replacement of part of bonding material). The article aims at presenting the analysis of the effect of adding slag, achieved from wastewater sludge incineration in sewage treatment plant, on properties and quality of concrete mix and hardened concrete. Using an experimental method, the researcher designed the composition of the control concrete mix, which was then modified by means of slag. For all concrete mixtures determined – air content with the use of pressure method and consistency measured by the use of concrete slump test. For all concrete series the following tests were conducted: compressive strength of concrete after 7, 28 and 56 days of maturing, frost resistance for 100 cycles of freezing and thawing, water absorption. The use of slag, ground once in the disintegrator, causes a decrease of in compressive strength of concrete samples in relation to the control concrete series as well as bigger decrease in compressive strength after frost resistance test.


2021 ◽  
Vol 2 (1) ◽  
pp. 29-36
Author(s):  
Muhammad Muhsar ◽  
Abdul Kadir ◽  
Sulaiman Sulaiman

The purpose of this study was to Analyze the characteristics of theaggregates used in concrete mixtures and analyze how muchincrease in compressive strength of concrete with a variation ofnickel slag substitution 0%, 5%, 15%, 25% compared with normalconcrete. The characteristics of the material examined are watercontent, sludge content, specific gravity and absorption, volumeweight, abrasion with los angeles machines, and filter analysis.While the large increase in compressive strength of concrete can betested at the age of 7 days, 14 days, 28 days and 35 days. From the results of the analysis of the characteristics of nickel slagwaste in concrete mixes meet the test standards in concretemixtures, with a moisture content of 0.86%, sludge content of 0.44%,specific gravity of 2.94 gr / cm3, volume weight of 1.76 gr / cm3,abrasion 36.07%. And a large increase in compressive strength ofconcrete with a variation of nickel slag substitution of 0%, 5%, 15%,25% compared to normal concrete is increasing. The highestpercentage increase in concrete compressive strength is found inconcrete compressive strength between a variation of 15% with avariation of 25% at 14 days concrete age, with a percentage increasein value of 13.13%.


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


Author(s):  
Suhaib Bakshi

Abstract: Compressive strength of concrete is the capacity of concrete to bear loads of materials or structure sans breaking or being deformed. Specimen under compression shrinks in size whilst under tension the size elongates. Compressive strength essentially gives concept about the properties of concrete. Compressive strength relies on many aspects such as water-cement ratio, strength of cement, calidad of concrete material. Specimens are tested by compression testing machine after the span of 7 or 28 days of curing. Compressive strength of the concrete is designated by the load on the area of specimen. In this research various proportions of such aggregate mixed in preparing M 30 grade and M 40 grade of Concrete mix and the effect is studied on its compressive strength . Several research papers have been assessed to analyze the compressive strength of concrete and the effect of different zones of sand on compressive strength are discussed in this paper. Keywords: Sand, Gradation, Coarse aggregate, Compressive strength


2021 ◽  
Vol 5 (2) ◽  
pp. 74-84
Author(s):  
Syf. Umi Kalsum ◽  
Betti Ses Eka Polonia ◽  
Hurul 'Ain

Recycling is one way that is used to minimize the amount of waste that exists. Recycling is also a process to reduce the use of new raw materials, reduce energy use, reduce pollution, land degradation and greenhouse gas emissions. Materials that can be recycled consist of waste of glass, plastic, paper, metal, textiles and electronic goods. Glass has characteristics suitable as concrete aggregates, considering that glass is a material that does not absorb water. In addition, glass has high abrasion resistance. Meanwhile, the waste glass flux lowers the temperature to the temperature at which the formers will melt. Stabilizers in glass waste are made of calcium carbonate, which makes the glass waste solid and water-resistant. This glass waste is recycled by mixing it into the concrete mix. The recycling method is done by pounding the glass and putting it into the concrete mix stage. The purpose of mixing the glass waste is expected to increase the compressive strength of concrete. The use of glass waste as a mixed material affects the compressive strength of the concrete. The concrete with the most inferior to highest compressive strength is 4% variation concrete, 2% variation concrete, and traditional concrete. Optimal percentage addition of glass waste impacts on maximum concrete compressive strength is 2% mixture variation which obtained 11,88 Mpa & 11,32 Mpa.


Sign in / Sign up

Export Citation Format

Share Document