Role of liquid sintering aids in the synthesis of SiAlON materials

2021 ◽  
Vol 25 (7) ◽  
pp. 93-97
Author(s):  
B. Mandal ◽  
T. Das

The synthesis of dense sintered sialon with external additives selected from the system Y2O3-AlN-SiO2 is described. The highest density (3.21g/cc) was achieved at 1750ºC at 90 min of sintering with 5 wt% additive. Non-oxide ceramic materials are increasingly coming out as a potential candidate in engineering applications and among them, sialon is one of the most important materials. β-Sialon was first to be discovered in this class of compounds. It has an excellent combination of thermal, mechanical and chemical properties. The degree of sialon substitution increased with the amount of liquids, the YSiO2N crystalline phase formed concurrently. Strength degradation occurred above 1000ºC.The fracture toughness of the material sintered with a lower amount of sintering aid remained relatively unchanged to 1200ºC.

2020 ◽  
Author(s):  
Tulin Okbinoglu ◽  
Pierre Kennepohl

Molecules containing sulfur-nitrogen bonds, like sulfonamides, have long been of interest due to their many uses and chemical properties. Understanding the factors that cause sulfonamide reactivity is important, yet their continues to be controversy regarding the relevance of S-N π bonding in describing these species. In this paper, we use sulfur K-edge x-ray absorption spectroscopy (XAS) in conjunction with density functional theory (DFT) to explore the role of S<sub>3p</sub> contributions to π-bonding in sulfonamides, sulfinamides and sulfenamides. We explore the nature of electron distribution of the sulfur atom and its nearest neighbors and extend the scope to explore the effects on rotational barriers along the sulfur-nitrogen axis. The experimental XAS data together with TD-DFT calculations confirm that sulfonamides, and the other sulfinated amides in this series, have essentially no S-N π bonding involving S<sub>3p</sub> contributions and that electron repulsion and is the dominant force that affect rotational barriers.


2004 ◽  
Vol 49 (3) ◽  
pp. 165-172 ◽  
Author(s):  
M. Yazgan ◽  
A. Tanik

The study covers the investigation of pesticides in terms of consumption, toxicological classification and various intrinsic physical and chemical properties like DT50, KOC, GUS, solubility that describe the important mechanisms prevailing in soil, namely persistence and mobility. These mechanisms help to estimate the transportation pathways of pesticides on soil till they reach the receiving water after being applied on land. Classification is done in three groups, those likely to appear in surface flow, those that appear in groundwater and those that present transient conditions. Such an approach that also takes into account toxicological levels and annual consumption values of pesticides will act as a tool to prepare the priority list of pesticides that need special care during their transportation. The fate of pesticides is a difficult task to solve, however, such a methodology, puts forth a rough estimate on their behavior in spite of uncertainties in many of the parameters describing mechanisms like persistence and mobility. The agricultural areas of two watersheds of Istanbul are selected as target areas to describe the approach, which is also checked with another approach estimating pesticide pollution potential that considers various other properties of pesticides. Almost similar findings are depicted with 85% proximity. The methodology presented in the paper illustrates and emphasizes the significant role of pesticide properties in determining their fate in soil after being applied.


2011 ◽  
Vol 32 (4) ◽  
pp. 423-433 ◽  
Author(s):  
Aneta Magdziarz ◽  
Małgorzata Wilk ◽  
Monika Zajemska

Modelling of pollutants concentrations from the biomass combustion process This paper presents possibilities for of numerical modelling of biomass combustion in a commercially available boiler. A sample of biomass was tested with respect to its physical and chemical properties. Thermogravimetry studies of biomass were carried out. Computer simulation makes it possible to analyse complex phenomena which are otherwise difficult to observe. The aim of this work was to model biomass combustion to predict the amount of pollutants generated (NOx, CO, SO2) in the exhaust gases coming out from boilers The calculations were made using the CHEMKIN program. Results of calculations were performed taking into account the influence of temperature, pressure and residence time.


Author(s):  
Kristin Schirmer ◽  
Katrin Tanneberger ◽  
Nynke I. Kramer ◽  
Frans J.M. Busser ◽  
Joop L.M. Hermens ◽  
...  

2012 ◽  
Vol 578 ◽  
pp. 183-186
Author(s):  
Xiao Chun Cao ◽  
Yi Qin ◽  
Yan Na Zhao ◽  
Kun Ke

Using the preliminary research of the polymer properties, the different between the physical and chemical properties of new polymer-clays nanometer composites and clay have been studied. Different polymers are used to evaluate experiment. Based on a large number of lab experiments, the changes of rheological property and API filtration property of polymer-clay drilling fluids nanometer composites are studied. The results show that clay particles could become smaller and the composites drilling fluid have the role of controlling loss and enhancing cake quality. The prepared composites could be used to solve the technical problems in drilling fluid.


2015 ◽  
Vol 17 (26) ◽  
pp. 16733-16743 ◽  
Author(s):  
Lipeng Zhang ◽  
Quan Xu ◽  
Jianbing Niu ◽  
Zhenhai Xia

Defects are common but important in graphene, which could significantly tailor the electronic structures and physical and chemical properties.


1984 ◽  
Vol 32 ◽  
Author(s):  
D. R. Uhlmann ◽  
B.J.J. Zelinski ◽  
G.E. Wnek

ABSTRACTThe use of sol-gel techniques to prepare glasses and crystalline ceramics offers outstanding opportunity for breakthroughs in technology. The areas of particular promise include novel glasses; crystallineceramics with exceptional microstructures; coatings for modification of electrical, optical, mechanical and chemical properties; porous media with high surface area and tailored chemistry; ceramic powders with high chemical homogeneity and narrow distributions of particle size; matrix materials in ceramicceramic composites; and a wide spectrum of specialty ceramic materials, ranging from abrasives and fibers to glass ceramics and films. Opportunities in each of these areas will be discussed and related to the advances in understanding and process technology required for their achievement. The theses will be advanced that creative chemistry provides the key to many of these advances, that ceramists simply MUST learn more chemistry, but that we dare not rest from our labors when the chemistry is done.


2020 ◽  
Vol 32 ◽  
pp. 209-223
Author(s):  
Adelina Miteva ◽  
Valeria Stoyanova

This brief overview presents an attempt to systematize some of the available historical and recent data on the impact of zeolite science and engineering on the progress of various areas of Earth and Space development. The basic structural and chemical properties of natural and synthetic zeolites are presented. Valuable applications of the zeolites, such as catalysts, gas adsorbers and ion exchangers are also included. The most commonly used methods for the synthesis of zeolites from different materials are presented, as well as some Bulgarian developments for the reuse of waste materials to zeolites. The important role of zeolites as an indispensable material for improving the quality of soil, fuels, water, air, etc., required for the needs of orbiting space stations and spacecrafts has been confirmed by typical examples.


2021 ◽  
Vol 118 (49) ◽  
pp. e2109241118
Author(s):  
Linh N. V. Le ◽  
Gwendolyn A. Bailey ◽  
Anna G. Scott ◽  
Theodor Agapie

Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFe7S8C cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFe3S3C displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [Tp*M’Fe3S3X]n−, where M’ = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp* = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M’ results in minor changes, the chelating, μ3-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.


Sign in / Sign up

Export Citation Format

Share Document