scholarly journals Characterization of Wear Modes in Orthogonal Milling of 15-5PH Stainless Steel

2021 ◽  
Author(s):  
Tom David ◽  
Grégory Methon ◽  
Rachid M’Saoubi ◽  
Mathieu Girinon ◽  
Joël Rech ◽  
...  

Tool wear remains of high interest for industry, as it influences process costs and part’s surface integrity. Although experimental and analytical investigations have been the main ways to investigate wear, the growing development of computational power enables predicting tool wear based on chip formation simulations. If this has been quite successful in turning, developments in milling are still limited due to the specific nature of this machining operation characterized by an interrupted cutting process leading to mechanical and thermal cyclic loadings onto the cutting tool. Wear modes are often not well characterized and become even more difficult to model as far as hard to machine material such as martensitic stainless steels are concerned. The present work propose to investigate wear in orthogonal milling of a 15-5PH martensitic stainless steel. An experimental campaign is first performed to identify the wear modes when cutting this material with uncoated and coated carbide tools. Milling forces, tool wear and material transfer are especially studied. A multi-scale numerical procedure is then developed by combining an Arbitrary-Lagrangian-Eulerian (ALE) thermomechanical model to a pure thermal sub-model in order to predict the thermomechanical loadings withstood by the tool. The thermal sub-model is applied at the scale of the coating in order to extract the thermal gradients generated by the interrupted cutting. These loadings are finally compared to the reported wear modes to identify a correlation and improve their understanding.

2015 ◽  
Vol 1115 ◽  
pp. 100-103
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Siti Aminatuzzuhriyah B. Haji Subir ◽  
Fawaz Mohsen Abdullah

Chatter is a type of intensive self-excited vibration commonly encountered in machining. It reduces productivity and precision, and is more noticeable in the machining of difficult-to-cut alloys like hardened steel. In such cases chatter causes excessive tool wear, especially flank wear, which in turn affects the stability of the cutting edge leading to premature tool failure, poor surface finish, and unsatisfactory machining performance. Nowadays, however, the demand is for fine finish, high accuracy, and low operation costs. Therefore, any technique which significantly reduces chatter is profitable for the industry. This paper demonstrates the viability and effectiveness of a novel chatter control strategy in the turning of (AISI 304) stainless steel by using permanent bar magnets. Reduction in chatter and corresponding tool flank wear are compared from results for both undamped and magnetically damped turning using coated carbide inserts. Special fixtures and keyway were made from mild steel in order to affix the magnets on the lathe’s carriage. The two ferrite magnets (1500 Gauss each) were placed below and beside the tool shank for damping from Z and X directions, respectively. Response surface methodology (RSM) was used to design the experimental runs in terms of the three primary cutting parameters: cutting speed, feed, and depth of cut. A Kistler 50g accelerometer measured the vibrations. The data was subsequently processed using DasyLab (version 6) software. The tool wear was measured using scanning electron microscope (SEM). Results indicate that this damping setup can reduce vibration amplitude by 47.36% and tool wear by 63.85%, on average. Thus, this technique is a simple and economical way of lowering vibration and tool wear in the turning of stainless steel.


2010 ◽  
Vol 156-157 ◽  
pp. 943-947
Author(s):  
Xue Hui Pang ◽  
Xiao Yan Zhang

The high nitrogen austenitic stainless steel is a kind of difficult-to-machine material. On the basis of material properties analysis, and through comparison test of tool wear resistance, this article made a study on the typical wear & breakage patterns and wears mechanism of insert during the cutting process, and made an analysis on the affection of the mechanical properties of tool materials of various brands to the cutting technological parameters. The results show that the tool wear and breakage are mainly expressed as adhesive wear of rake face and micro chipping of end cutting edge. Compared with the other inserts, YG8 has the best property and a longest life span within the 50~75 m /min cutting speed range.


2012 ◽  
Vol 224 ◽  
pp. 204-207
Author(s):  
Jozef Jurko ◽  
Anton Panda ◽  
Marcel Behún

This article presents conclusions of use TiAlN at drilling of a new austenitic stainless steels. This article presents the results of experiments that concerned the verification of the cutting tool wear. The results of cutting zone evaluation under cutting conditions (cutting speed vc=60 m/min, depth of cut ap= 3.0 mm and feed f= 0.04 mm per rev.) .


2020 ◽  
Vol 1013 ◽  
pp. 33-40
Author(s):  
Peter Babatunde Odedeyi ◽  
Khaled Abou-El-Hossein

The high-performance machining of difficult-to-cut stainless steel (AISI 316) demands the development and optimization of high-performance tools that can withstand tool load without compromising the surface quality of the components been produced. To justify the optimization feasibility of coated carbide tool in end milling application for good surface quality, a material removal and Productivity approach by evaluating the tool life under optimized cutting condition were carried out in this current research. The objective of this study is to optimize flank tool wear in end milling of AISI 316 using Design of Experiment and box-Behnken method. Tool wear value of 0.174mm was achieved through optimization at low values of feed, speed, and depth of cut. However, an increased feed, depth of cut and speed promised to yield better volume removed in return making tool life to be truncated faster.


Author(s):  
Shirish Kadam ◽  
Rohit Khake ◽  
Sadaiah Mudigonda

This paper addresses experimental investigations of turning Super Duplex Stainless Steel (DSS) with uncoated and Physical Vapor Deposition PVD coated carbide inserts under dry cutting condition. The parametric influence of cutting speed, feed and depth of cut on the surface finish and machinability aspects such as cutting force and tool wear are studied and conclusions are drawn. The turning parameters considered are cutting speed of 60–360 m/min, feed of 0.05–0.35 mm/rev and depth of cut of 0.5–2 mm. Tool wear was analysed by using an optical microscope and scanning electron microscope. The study includes identification of tool wear mechanism occurring on the flank face. The characterization of the coating was made by Calo test for measurement of coating thickness and nanoindentation for hardness. Comparison of performance of PVD coatings TiAlSiN (3.3μm), AlTiN (3 μm) and AlTiN (7 μm) have been made in terms of tool life. The coatings were produced on P-grade tungsten carbide inserts by using High Power Impulse Magnetron Sputtering (HiPIMS) technology. The findings of the study also provide the economic solution in case of dry turning of super DSS.


2010 ◽  
Vol 39 ◽  
pp. 369-374 ◽  
Author(s):  
Jozef Jurko

In this paper presents the conclusions of machinability tests on a new stainless steel X4Cr17Ni8TiN, which applicated in food processing industry, and describes important concurrent parameters for the cutting zone during the process of finish drilling. This paper presents the results of experiments that concerned the verification of temperature fields in tool and the machined surface by drilling of stainless steels X4Cr17Ni8TiN. The content of this paper also focuses on the analysis of selected domains through basic indicators of steel machinability: cutting edge tool life, surface roughness, and wear mechanisms. The machinability of stainless steels is examined based on the cutting tests. The effect of cutting speed are analysed by tool wear mechanisms, and temperature tool. Based on the cutting tests, cutting speeds of 40 to 80 m/min, feed rate of 0.04 to 0.1 mm per rev.and solid a new design of screw drill from sintered carbide with hydraulic holder. Diameter of screw drill is 5.5 mm. Tool wear criterion of VBK value 0.12 mm. Wear mechanisms analysed by Semi Electron Microscopy (SEM).


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
M.S.I. Chowdhury ◽  
B. Bose ◽  
S. Rawal ◽  
G.S. Fox-Rabinovich ◽  
S.C. Veldhuis

Tool wear phenomena during the machining of titanium alloys are very complex. Severe adhesive interaction at the tool chip interface, especially at low cutting speeds, leads to intensive Built Up Edge (BUE) formation. Additionally, a high cutting temperature causes rapid wear in the carbide inserts due to the low thermal conductivity of titanium alloys. The current research studies the effect of AlTiN and CrN PVD coatings deposited on cutting tools during the rough turning of a Ti6Al4V alloy with severe BUE formation. Tool wear characteristics were evaluated in detail using a Scanning Electron Microscope (SEM) and volumetric wear measurements. Chip morphology analysis was conducted to assess the in situ tribological performance of the coatings. A high temperature–heavy load tribometer that mimics machining conditions was used to analyze the frictional behavior of the coatings. The micromechanical properties of the coatings were also investigated to gain a better understanding of the coating performance. It was demonstrated that the CrN coating possess unique micromechanical properties and tribological adaptive characteristics that minimize BUE formation and significantly improve tool performance during the machining of the Ti6Al4V alloy.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document