scholarly journals Perbandingan Perolehan Daya Solar Panel Monocrystalline Terhadap Solar Panel Polycrystalline

ELKHA ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 105
Author(s):  
Ervan Pratama ◽  
Richa Watiasih

The availability of two types of solar panels that are common in the market namely monocrystalline and polycrystalline types cause confusion in the selection so that many solar panel users are questioning the differences of these two types of solar panel. This study produced a data logger system using Arduino Uno R3 to control voltage, current and temperature sensors for logging data that stores power measurement data from monocrystalline and polycrystalline solar panel in a micro SD. After it we can manage data to compare power produced between two types the solar panel. From the results of testing this data logger system it can be seen that monocrystalline solar panel are 9.18% better on power produced than polycrystalline when the maximum power conversion is generated.

2020 ◽  
Vol 12 (2) ◽  
pp. 78-84
Author(s):  
Abhisak Sharma ◽  
Pardeep Kumar ◽  
Gyander Ghangas ◽  
Vishal Gupta ◽  
Himanshu Sharma ◽  
...  

This paper represents the comparison of the voltages generated by the tracking and static solar panels. The work also aims to design and  fabrication of a cheap and efficient tracking device. This device comprises of hardware and software. A rigid mechanical structure with nut and  screw as the transmission is developed. 4 LDRs and DC motors are employed, which are cheap and less power consuming. As far as the software  concerns, an open source microcontroller “Arduino UNO” board is used because of their simplicity and cost effectiveness. This Sun tracking device with a PV panel installed on it, is placed outside at the roof of the building along with a static solar panel. Output voltages generated from both panels are recorded in SD card through data logger in Arduino UNO. This real-time data shows the difference in amplitude of both the signals. Voltage of rotating panel is more than static one resulting that the tracking device can increase the efficiency of the panel by exposing the PV panel more to the sun light. Hence this setup proves that the solar panel with tracking system generates more energy than solar panel without tracking system. Keywords: Solar Tracker, LDR, PV Panel, Arduino UNO Board.


2016 ◽  
Vol 3 (1) ◽  
pp. 9-14 ◽  
Author(s):  
R. Ahiska ◽  
L. Nykyruy ◽  
G. Omer ◽  
G. Mateik

In this study, load characteristics of thermoelectric and photovoltaic solar panels areinvestigated and compared with each other with experiments. Thermoelectric solar panels convertsthe heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonicenergy from sun to electricity. In both types, maximum power can be obtained when the loadresistance is equal to internal resistance. According to experimental results, power generated fromunit surface with thermoelectric panel is 30 times greater than the power generated by photovoltaicpanel. From a panel surface of 1 m2, thermoelectric solar panel has generated 4 kW electric power,while from the same surface, photovoltaic panel has generated 132 W only.


2015 ◽  
Vol 793 ◽  
pp. 378-382 ◽  
Author(s):  
Nurul Afiqah Zainal ◽  
Sasikala A.P. Ganaisan ◽  
Ajisman

This paper proposes the implementation of a simple fuzzy logic controller (FLC) for a DC-DC boost converter based on a microcontroller to obtain maximum power from the solar system with the maximum power point tracking (MPPT) method. The system includes a solar panel, DC-DC boost converter, the fuzzy logic controller implemented on Arduino Uno for controlling on/off time of MOSFET of the boost converter, voltage divider and optocoupler circuit. This paper presents a fuzzy logic real time code in the Arduino language for ATmega328 microcontroller on the Arduino UNO board. The designed system increases the efficiency of the solar panel based on experimental results.


2018 ◽  
Vol 6 (1) ◽  
pp. 33-38
Author(s):  
Dinari Gustiana

In the Modern Era, a source of electrical energy is very necessary, given the large number of electronic equipment that really requires a source of electrical energy. Solarcell is a device or component that can convert light energy into electrical energy. However, the energy used in this solar panel needs to be considered the efficiency of its use. Therefore it is necessary to monitor currents and voltages and loads in real time to determine the energy needs of solar panels for lamps. Monitoring of voltage, load and current on this solar panel is based on a microcontroller. The voltage generated by the solar panel and the battery voltage is measured using a sensor. It takes a Web and a modem device to send solar panel measurement data from a distance, with remote monitoring makes it easier to find out what the voltage and load is without having to be in place of the solar panel. Web as a control for lights, blackouts, dim and bright lights, on the web can monitor voltage and current values. The results of the microcontroller ADC are able to send data to the web. The data stored in the ms.excel file contains the voltage from the solar cell, the current at the load and the time when storing and charging the battery. The lights can only last 5 hours when all loads are active (ON), while charging (charging) for 13 hours when the battery is empty.


2018 ◽  
Vol 17 (1) ◽  
pp. 57
Author(s):  
S Udhayakumar ◽  
R A Sindhu ◽  
R Srivasthan ◽  
Y Yogaraj

The harvesting of solar energy is gaining increasing attention as it is pollution free and is available in abundance. Various researches and experiments are being carried out to improve the efficiency of power conversion by altering the material of the photovoltaic panels, by incorporating tracking systems and by making use of Maximum Power Point Tracking (MPPT) algorithms. The conventional rigidly fixed solar panels limit their area of exposure to the sun during the entire day. The use of tracker increases the area of panel exposed to direct beam of the sun, thus increasing the power generated. MPPT algorithm tracks the maximum power point attained at all loads and extracts the power from the panel at that voltage. Despite the variations in the external environment, the power obtained from the panel is always maximum. This paper reviews various tracking methods and MPPT techniques to increase the energy harvesting capacity of the panel and in turn improve its efficiency.


2021 ◽  
Vol 3 (2) ◽  
pp. 133-140
Author(s):  
Marhaposan Situmorang ◽  
Monika Panjaitan

Solar energy has been considered as a promising renewable energy source for electric power generation. Solar panel systems have become a popular object to be developed by researchers, but the low efficiency of solar panels in energy conversion is one of the weaknesses of this system. Factors that affect the output produced by solar panels are the intensity of sunlight and the working temperature of the solar panels. The solar panel module has a single operating point where the voltage and current outputs produce the maximum power output. There are three main methods in Maximum Power Point Tracking (MPPT), namely conventional methods, artificial intelligence methods, and hybrid methods. In most solar panel systems, this study uses Maximum Power Point Tracking (MPPT) with perturb and observe algorithms to maximize the use of solar energy. The maximum power point extracted by MPPT will be supplied to the battery and controlled by the Charge Controller. The energy stored in the battery will be used by the Thermo Electric Cooler cooling system to reach the desired temperature point using the keypad as temperature input.


JURNAL ELTEK ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 83
Author(s):  
Fathoni Fathoni ◽  
Agus Pracoyo ◽  
Totok Winarno

Penggabungan pembangkit listrik panel surya dan alternator mobil mempunyai keuntungan, yaitu sama-sama pembangkit listrik DC 12 volt sehingga dapat langsung digunakan untuk pengisian baterai. Pemanfaatan alternator sebagai pembangkit listrik DC dari sumber daya tidak tetap seperti tenaga angin akan dipengaruhi oleh keadaan alam, seperti kecepatan, arah dan keberadaannya serta sifat dari alternator itu sendiri yang merupakan generator magnet tak permanen. Jika tidak ada angin atau kecepatan kurang dari batas minimalnya, arus medan alternator harus diputus agar tidak ada kerugian daya atau terjadi pengisian negatip.Diperlukan pengaturan arus medan agar dapat menghasilkan arus pengisian baterai. Penggabungan panel surya dan alternator sebagai pembangkit listrik DC atau sering disebut pembangkit listrik hybrid menjadikan sumber arus pengisian baterai lebih besar tetapi memerlukan pengaturan yang lebih komplek. Pengaturan arus pengisian baterai dari panel surya menggunakan konverter buck-boost sedangkan pada alternator menggunakan pengaturan arus medan yang berdasar pada kecepatan putarnya.Untuk pengisian secara cepat, pembatasan pengisian arus maksimal ditetapkan 5A dan tegangan maksimal 14 volt. Pemutusan pengisian dengan cara memutus arus rotor serta membuat konverter off. Pembacaan tegangan baterai dilakukan periodik.Data pengukuran padapenyinaran cuaca cerah bulan Juli 2018 dari pukul 8.00 hingga pukul 15.00 dan digabung dengan alternator dengan putaran 1.000, 1.500 dan2.000 rpm menghasilkan arus pengisian maksimal hampir 4A.   The merger of solar panel power plants and car alternators has the advantage of being both a 12 volt DC power plant which can be directly used for battery charging. The use of alternators as DC power plants from non-fixed resources such as wind power will be influenced by natural conditions, such as speed, direction and existence and the nature of the alternator itself which is a non-permanent magnet generator. If there is no wind or speed is less than the minimum, the alternator field current must be disconnected so that there is no power loss or negative charging occurs. Field current settings are needed to produce a battery charging current. The incorporation of solar panels and alternators as DC power plants or often called hybrid power plants makes the battery charging current larger but requires a more complex arrangement. Setting the battery charging current of the solar panel uses an adjustable buck-boost converter on the alternator using an alternator field current setting based on its rotational speed. For fast charging, the limitation of charging is a maximum current of 5A and a maximum voltage of 14 volts. Termination of charging by disconnecting the rotor current and making the converter off. The battery voltage reading is periodic. Measurement data on the irradiation of sunny weather in July 2018 from 8:00 to 15:00 and combined with alternators with rotations 1,000, 1,500 and 2,000 rpm produce a maximum charging current of almost 4A.


Author(s):  
Titien Kumala Sari ◽  
Toibah Umi Kalsum

Panel Surya (Panel Photovoltaik) adalah suatu panel yang terdiri dari kumpulan sel surya berfungsi merubah energi cahaya menjadi energi listrik dengan memanfaatkan efek photovoltaik. Photovoltaik dapat diartikan sebagai "cahaya-listrik". Sel surya atau sel PV bergantung pada efek photovoltaik untuk menyerap energi matahari dan menyebabkan arus mengalir antara dua lapisan bermuatan yang berlawanan. Pada umumnya modul photovoltaik dipasarkan dengan kapasitas 50 Watt-peak (Wp) dan kelipatannya. Unit satuan Watt-peak adalah satuan daya (Watt) yang dapat dibangkitkan oleh modul photovoltaik dalam keadaan standar uji (Standard Test Condition – STC). Penggunaan arduino uno pada panel surya ini tujuannya agar pengaturan arah panel surya selalu tegak lurus dengan arah cahaya matahari. Dengan demikian dibuat sebuah sistem kontrol yang dapat mengatur arah panel surya secara otomatis melalui pengerak driver motor.Hasil analisa sistem gerak panel surya berbasis Arduino Uno, pada Panel Surya ini menggunakan Arduino Uno sebagai sistem gerak untuk mengikuti arah matahari, RTC digunakan sebagai penerimaan perintah yang dikirim melalui panel surya agar dapa membaca kisaran sudut, stepper difungsikan sebagai penggerak panel surya yang dikendalikan menggunakan Arduino UNO menggunakan aplikasi. Hasil yang optimal terdapat pada jam 11.00 - 12.00 wib karena cahaya matahari lebih terik dari waktu pagi dan sore. Hasil arus dan tegangan sesuai yang didapatkan karena pengoptimal arus dan tegangan pada panel surya bergerak lebih efisien. Kata kunci :Panel Surya, Driver Motor, RTC, Arduino UNOThe Solar Panel (Photovoltaic Panel) is a panel consisting of a collection of solar cells that functions to convert light energy into electrical energy by utilizing photovoltaic effects. Photovoltaics can be interpreted as "light-electricity". Solar cells or PV cells depend on photovoltaic effects to absorb solar energy and cause current to flow between two opposite charged layers. In general, photovoltaic modules are marketed with a capacity of 50 Watt-peak (Wp) and multiples thereof. Watt-peak units are units of power (Watts) that can be generated by photovoltaic modules in standard test conditions (STC). The use of Arduino Uno on solar panels is intended to regulate the direction of the solar panel always perpendicular to the direction of sunlight. Thus, a control system is created that can automatically adjust the direction of the solar panel through the driver of the motor. The results of the analysis of the motion of solar panels based on Arduino Uno, in this Solar Panel using Arduino Uno as a motion system to follow the direction of the sun, RTC is used as receiving commands sent through solar panels so that they can read the angle range, stepper functioned as a solar panel driven Arduino UNO uses the application. Optimal results are available at 11.00 - 12.00 WIB because the sun's rays are hotter than morning and evening. The current and voltage results are as obtained because the current and voltage optimizers in solar panels move more efficiently. Keywords: Solar Panel, Motor Driver, RTC, Arduino UNO


2020 ◽  
Vol 190 ◽  
pp. 00026
Author(s):  
Mohammad Luthfansyah ◽  
Suyanto Suyanto ◽  
Abu Bakarr Momodu Bangura

Maximum Power Point Tracking (MPPT) is a method that can be used to optimize the electrical power output from solar panels. The performance of the MPPT method on solar panel systems can be influenced by many variables. One of them is the selection of a DC-DC power converter. DC-DC-DC Converter is a component that is used to optimize the performance of solar panels. Several types of DC-DC Converter are Buck, Buck-Boost, Single Ended Primary Inductance Converter (SEPIC), and CUK. Each converter has a different effect on solar panels output power. In order to observe and make a comprehensive analysis, simulations are performed through PSIM (Power Simulator) software on the performance of several DC-DC Converters that use Flower Pollination Algorithm (FPA) as the MPPT algorithm. Variables that observed are the output power characteristic, the response of the voltage-current ripple signal, and the accuracy of the converter in the process of reaching the maximum power point condition. As a result, CUK converter can obtain the highest value of solar panel output power, 145.02 W. A low ripple level with a stable power value response is entirely generated by CUK and SEPIC Converter. Overall, for this system, the CUK converter has better performance than the other converters.


Sign in / Sign up

Export Citation Format

Share Document