RANCANGAN RANGKAIAN PENGATUR PENGISIAN BATERAI PADA PEMBANGKIT LISTRIK DC GABUNGAN PANEL SURYA DAN ALTERNATOR

JURNAL ELTEK ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 83
Author(s):  
Fathoni Fathoni ◽  
Agus Pracoyo ◽  
Totok Winarno

Penggabungan pembangkit listrik panel surya dan alternator mobil mempunyai keuntungan, yaitu sama-sama pembangkit listrik DC 12 volt sehingga dapat langsung digunakan untuk pengisian baterai. Pemanfaatan alternator sebagai pembangkit listrik DC dari sumber daya tidak tetap seperti tenaga angin akan dipengaruhi oleh keadaan alam, seperti kecepatan, arah dan keberadaannya serta sifat dari alternator itu sendiri yang merupakan generator magnet tak permanen. Jika tidak ada angin atau kecepatan kurang dari batas minimalnya, arus medan alternator harus diputus agar tidak ada kerugian daya atau terjadi pengisian negatip.Diperlukan pengaturan arus medan agar dapat menghasilkan arus pengisian baterai. Penggabungan panel surya dan alternator sebagai pembangkit listrik DC atau sering disebut pembangkit listrik hybrid menjadikan sumber arus pengisian baterai lebih besar tetapi memerlukan pengaturan yang lebih komplek. Pengaturan arus pengisian baterai dari panel surya menggunakan konverter buck-boost sedangkan pada alternator menggunakan pengaturan arus medan yang berdasar pada kecepatan putarnya.Untuk pengisian secara cepat, pembatasan pengisian arus maksimal ditetapkan 5A dan tegangan maksimal 14 volt. Pemutusan pengisian dengan cara memutus arus rotor serta membuat konverter off. Pembacaan tegangan baterai dilakukan periodik.Data pengukuran padapenyinaran cuaca cerah bulan Juli 2018 dari pukul 8.00 hingga pukul 15.00 dan digabung dengan alternator dengan putaran 1.000, 1.500 dan2.000 rpm menghasilkan arus pengisian maksimal hampir 4A.   The merger of solar panel power plants and car alternators has the advantage of being both a 12 volt DC power plant which can be directly used for battery charging. The use of alternators as DC power plants from non-fixed resources such as wind power will be influenced by natural conditions, such as speed, direction and existence and the nature of the alternator itself which is a non-permanent magnet generator. If there is no wind or speed is less than the minimum, the alternator field current must be disconnected so that there is no power loss or negative charging occurs. Field current settings are needed to produce a battery charging current. The incorporation of solar panels and alternators as DC power plants or often called hybrid power plants makes the battery charging current larger but requires a more complex arrangement. Setting the battery charging current of the solar panel uses an adjustable buck-boost converter on the alternator using an alternator field current setting based on its rotational speed. For fast charging, the limitation of charging is a maximum current of 5A and a maximum voltage of 14 volts. Termination of charging by disconnecting the rotor current and making the converter off. The battery voltage reading is periodic. Measurement data on the irradiation of sunny weather in July 2018 from 8:00 to 15:00 and combined with alternators with rotations 1,000, 1,500 and 2,000 rpm produce a maximum charging current of almost 4A.

2016 ◽  
Vol 16 (1) ◽  
pp. 30
Author(s):  
Handy Indra Regain Mosey

ABSTRAK Paper ini membahas tentang simulasi dan pembuatan rangkaian sistem kontrol pengisian baterai yang bersumber dari sebuah pembangkit listrik tenaga surya (Panel Surya). Pengisian baterai yang terlalu lama pada sebuah instalasi pembangkit listrik tenaga surya akan menyebabkan baterai cepat rusak sehingga dibutuhkan sebuah sistem yang dapat berfungsi sebagai pengontrol. Metode penelitian yang dilakukan yaitu dengan merangkai rangkaian yang didapat dari pustaka kemudian disimulasikan dengan perangkat lunak Proteus ISIS Profesional, selanjutnya dilakukan pembuatan rangkaian elektronika dalam sebuah PCB. Tegangan yang dihasilkan oleh baterai dibaca oleh sistem kontrol kemudian sistem akan memilih apabila tegangan yang diberikan oleh panel surya akan diisi pada baterai atau dialihkan kepada sebuah beban tambahan. Hasil yang didapatkan dalam penelitian menunjukan bahwa sistem kontrol pengisian baterai yang dibangun telah bekerja sesuai dengan simulasi dan dapat bekerja dengan baik. Kata-kata kunci: sistem kontrol baterai, switch, panel surya. SIMULATION AND CONSTRUCTION OF A BATTERY CHARGING CONTROLLER SYSTEM FOR SOLAR POWER PLANTS ABSTRACT This paper discusses about circuit simulation and construction of a battery charging control system from a solar power plant (Solar Panels). Charging the battery for too long on an installation of solar power plants will cause the battery to be broken and so we need a system that can function as a controller. The research method is made by simulating a baterry charging control circuit from a reference and then simulated by Proteus ISIS Professional software, then constructing the circuit on a PCB. The voltage produced by the solar panel is read by the control system then the system will prefer if the voltage supplied by the solar panels will be filled on the battery or transferred to an additional load. Result obtained in this study indicate that the baterry charging control system are working in accordance with the software simulation and can work as a baterry charging control system for a solar panel instalation. Keywords: Baterry charging control, switch, solar panel.


Author(s):  
Rohana Rohana ◽  
Suwarno Suwarno

<p>This paper discusses the optimization circuit based buck-boost converter for charging a battery from solar panel modules. The combination of the circuit buck-bust converter and a step-up current can increase the percentage of battery chargers. The method used in the optimization of solar power plants by increasing the output current from the solar panel to be optimized for battery charging, so it does not requires time and the batteries are safe. This is because sunlight can be used when bright about 4-5 hours per day. By increasing the output current of the current produced solar modules can accelerate the battery charging time. The combination of using the voltage stabilizer can produce a steady output voltage and current riser, although the voltage to an output of the solar panels is quite small (± 6 volts), can optimize the charger works well. By combining between the voltage stabilizer and a step-up current is obtained that the incoming voltage to the battery at 12,4V the current rise of 21.5% for a 12V battery, 7Ah, whereas the incoming voltage to the battery at 12,1V the current rise 10.99% for battery 12V, 120Ah. This study shows that the current rise is already above 10%.</p>


2019 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Rizal Akbarudin Rahman ◽  
Aripriharta Aripriharta ◽  
Hari Putranto

The use of renewable energy as a source of electrical energyincreases every year. Unfortunately, Indonesia does not have manypower plants that utilize renewable energy sources. The mostpotential renewable energy in Indonesia is the sunlight with the helpof solar panels that converts solar energy into electrical energy.However, the environment could affect the solar panel module andin turn, affect the performance of solar panels or the generatedelectric energy. This research calculated the performance of solarpanels with a single-diode model using the Five Parameters methodthat required solar panel module specification data, the totalradiation absorbed by the solar panel module, and the temperatureof the environment. The Five Parameters method is a methodmodeled after solar panel module performance in the form of thesingle-diode equivalent circuit. The Five Parameters method isreliable in predicting the energy produced by the solar panels whenthe input data is limited. The results for using the Five Parametersin monocrystalline solar panels were Isc = 1.827 A, Imp = 0.662 A,Voc = 18.221 V, Vmp = 15.019 V, Pmp = 9.955 W. And the results inpolycrystalline solar panels were Isc = 1.926 A, Imp = 0.686 A, Voc =17.594 V, Vmp = 14.166 V, Pmp = 9.722 W. Based on the results; itwas concluded that the most efficient and optimised types of solarpanels on natural conditions in Sendang Biru Beach was themonocrystalline solar panel because it produced electrical outputpower of 9.955 W. Therefore, there could be a manufacturer ofsolar energy power plants to reduce the cost of electricity in thecoastal area, such as in Sendang Biru Beach.


2018 ◽  
Vol 6 (1) ◽  
pp. 33-38
Author(s):  
Dinari Gustiana

In the Modern Era, a source of electrical energy is very necessary, given the large number of electronic equipment that really requires a source of electrical energy. Solarcell is a device or component that can convert light energy into electrical energy. However, the energy used in this solar panel needs to be considered the efficiency of its use. Therefore it is necessary to monitor currents and voltages and loads in real time to determine the energy needs of solar panels for lamps. Monitoring of voltage, load and current on this solar panel is based on a microcontroller. The voltage generated by the solar panel and the battery voltage is measured using a sensor. It takes a Web and a modem device to send solar panel measurement data from a distance, with remote monitoring makes it easier to find out what the voltage and load is without having to be in place of the solar panel. Web as a control for lights, blackouts, dim and bright lights, on the web can monitor voltage and current values. The results of the microcontroller ADC are able to send data to the web. The data stored in the ms.excel file contains the voltage from the solar cell, the current at the load and the time when storing and charging the battery. The lights can only last 5 hours when all loads are active (ON), while charging (charging) for 13 hours when the battery is empty.


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


Author(s):  
K.V. Selivanov

The paper analyzes the state and possible ways of development of alternative energy, describes the prospects for the development of solar power plants, their classification and areas of application. Within the research, we revealed the problems that arise when installing and operating solar panels and identified the reasons that reduce their efficiency. Consequently, we analyzed the ways to increase the efficiency of power generation by solar panels and suggested solar panel automatic positioning and maximum light flux direction tracking as a possible solution to the problem. The study introduces a new device for positioning solar panels, which is distinguished by the automatic deployment and positioning of solar panels according to the actual direction of the maximum light flux. The device provides possible automation of the installation and greater efficiency of solar panels. The novelty of the device is protected by a utility model patent no. 180765 RF. To confirm the efficiency and to obtain a quantitative value of the increase in power generation by solar panels due to the use of the developed device, we present the comparison methodology and a description of the experiment. The schematic diagram and external view of the developed device are also shown. The experimental results are processed and shown in a graph. The possibility of increasing power generation by solar panels by tracking the maximum light flux and reorienting the solar panel towards it during the day has been confirmed, and a quantitative value of the increase in power generation has been obtained. Based on the positive results of the experiment, the possibility of using the developed device for automating the process of deploying solar panels in an autonomous way and excluding human participation in this process is described. The operation of the developed device on a moving vehicle and other methods of its application are considered. The results are summed up, conclusions are drawn and possible further directions for the development and use of the proposed method for increasing the efficiency of solar panels and the developed device for improving the performance of solar panels are identified


Author(s):  
Zhen Li ◽  
Chuanjin Lan ◽  
Yanbao Ma

Flat solar panels array is one of the typical geometries used in photovoltaic (PV) power plants. The presence of these inclined solar panels can significantly accelerate or decelerate wind speed and distort the wind velocity profiles near the ground when wind flows around, which leads to considerable changes in dust emissions determined by shear stress at ground surface. To understand the fundamental principle of the effects of a flat solar panel on the dust emission rate at ground surface, the incompressible viscous flow past an inclined flat plate with ground effect was numerically investigated based on finite volume method. Results indicate that the presence of an inclined plate has little impact on the ground when the gap between the plate and ground is larger than twice plate length at tilt angle of 25° and Reynolds number of 300. However, as the gap is decreased the vortex clusters behind the plate are flattened and restrained by the ground, which results in the change of the shear stress at the ground surface. Both the magnitude and the distribution of shear stress at the ground surface can be significantly changed by varying the distance between the plate and the ground. The results demonstrate the possibility to adjust the strength and distribution of surface shear stress hence change the dust emission rate on the ground by an inclined flat plate.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
I Gusti Lanang Yoga Rafsandita ◽  
Gede Widayana ◽  
I Wayan Sutaya

Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Wilayah Indonesia akan selalu disinari matahari selama 10 - 12 jam dalam sehari. Data Dirjen Listrik dan Pengembangan Energi pada tahun 1997, kapasitas terpasang listrik tenaga surya di Indonesia mencapai 0,88 MW dari potensi yang tersedia 1,2 x 109 MW. Kebanyakan panel surya dipasang permanen dengan sudut elevasi yang tetap (fixed elevating angles). Hal ini menyebabkan panel surya tersebut tidak dapat menyerap radiasi matahari secara optimal. Penyerapan radiasi matahari akan optimal jika arah radiasi matahari tegak lurus terhadap permukaan bidang panel surya. Penulis tertarik untuk merancang dan membuat alat yang dapat dipergunakan untuk menempelkan panel sel surya tetap dalam kondisi intensitas matahari yang maksimum. Dalam hal ini, menggunakan satu sumbu. dengan telah dibuatnya alat penggerak mekanik satu sumbu pada solar panel ini, penulis dapat memberikan gambaran tentang pembangkit listrik tenaga surya kepada masyarakat. Selain itu dengan adanya penggerak mekanik pada solar panel ini, solar panel bisa lebih besar menghasilkan tegangan pada baterai daripada solar panel tanpa penggerak. Dan dari percobaan menggunakan penggerak mekanik satu sumbu ini menghasilkan tegangan di pukul 08.00 pada baterai nominal sebesar 2,04V hari pertama, 2,05V hari kedua dan 2,03V hari ketiga dan di akhir perhitungan pukul 16.00 tegangan pada baterai menujukan nominal sebesar 11,18V hari pertama, 11,27V hari kedua dan 11,3V hari ketiga.Kata Kunci : Solar Panel, Tipe BCT30-12, Penggerak Satu Sumbu Indonesia is a country that has different kinds of energy resources in sufficient quantities abundant. then Indonesia will be always exposed to the sun for 10-12 hours a day. Data Director General of Electricity and Energy Development in 1997, the installed capacity of solar power in Indonesia reached 0.88 MW of the available potential of 1.2 x 109 MW. Most solar panels are installed permanently at a fixed elevation angle (fixed elevating angles). This causes the solar panels can not absorb solar radiation optimally. Absorption of solar radiation would be optimal if the solar radiation direction perpendicular to the surface of solar panel field. Writers interested in designing and creating tools that can be used to attach the solar panels remain in a state of maximum intensity of the sun. In this case, using a single axis. to have made a mechanical actuator on the solar panel one axis, the author can give an idea of solar power plants to the public. In addition to the mechanical drive on the solar panels, the solar panels generate voltage can be larger than the solar panel to the battery without driving. And from experiments using mechanical drive one axis produces a voltage at 08.00 at a total nominal battery 2,04V first day, 2,05V 2,03V second day and third day and at the end of the calculation 16.00 nominal voltage of the battery addressed by 11,18V the first day, 11,27V 11,3V second day and third day.keyword : Solar Panel, Type BCT30-12, Activator One Wick


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Kurnifan Adhi Prasetyo

Abstract The purpose of this research is to know the stages of manufacture, the performance and the development of solar panel control charging devices using arduino nano for commercial electric bicycle. Development of solar panel control charging device is expected to be used in utilizing solar thermal energy as a source of energy on a commercial electric bike with parameters generated from solar panels and battery charging. The result of this research is a solar panel charging control device that is used to control the input voltage from the solar panel to the battery used as a power source for the electric bicycle. The result are, the average battery charging power using 100 Watt Peak (WP) solar panel was 39.03 Watt with 160 minutes, the average efficiency of 85.82% and the yield of the battery voltage from 11 Vdc to 12.5 Vdc. While the average power charging battery using 300 WP solar panel is 57,43 Watt with time 50 minutes, average efficiency of 88.48% and battery voltage from 11 Vdc become 12,2 Vdc. Average percentage error of measurement parameter control charging solar panels below 10%. Keywords: control charging, solar panels, electric bike AbstrakTujuan dari penelitian ini adalah untuk mengetahui tahapan pembuatan, unjuk kerja dari pengembangan alat control charging panel surya menggunakan arduino nano untuk sepeda listrik niaga. Pengembangan alat control charging panel surya ini diharapkan dapat digunakan dalam memanfaatkan energi panas matahari sebagai sumber energi pada sepeda listrik niaga dengan parameter parameter yang dihasilkan dari panel surya dan pengisian aki. Hasil dari pembuatan proyek akhir ini berupa alat control charging panel surya yang digunakan untuk mengontrol tegangan masukan dari panel surya menuju aki yang dimanfaatkan sebagai sumber tenaga sepeda listrik niaga. Hasil pengujian, daya rata rata pengisian aki menggunakan panel surya 100 Watt Peak (WP) yang diuji adalah 39,03 Watt dengan waktu 160 menit, rata-rata efisiensi 85,82% dan hasil tegangan aki dari 11 Vdc menjadi 12,5 Vdc. Sedangkan daya rata rata pengisian aki menggunakan panel surya 300 WP yang diuji adalah 57,43 Watt dengan waktu 50 menit, rata-rata efisiensi 88.48% dan tegangan aki dari 11 Vdc menjadi 12,2 Vdc. Rata-rata persentase kesalahan parameter pengukuran alat control charging panel surya dibawah 10%. Kata Kunci : control charging, panel surya, Sepeda Listrik Niaga


2020 ◽  
Vol 17 (7) ◽  
pp. 3136-3140
Author(s):  
Suprianto

The continuity of electric power service is a major factor determining electrical customer satisfaction. Research on the implementation of the ATS system between solar cells and grid system as a supplier of electrical power to household electrical loads for continuity and savings in electricity consumption costs aims to design an ATS system for delivering electrical power to the load system that can maintain the continuity of the supply of electricity, reducing costs electricity consumption while reducing dependence on grid electricity supply. The specific target to be achieved in this research is to design an ATS system for the distribution of electric power between grid system and solar power system and find out the cost of savings while maintaining continuity of electricity services, so that electricity consumers can benefit from technical and economic aspects. The method used in this study is an experimental method that is designing an electrical power supply ATS system to get the results of a good design and as planned. The equipment used is solar panels, relays, timers, inverters, household electrical loads, contactors, electrical measuring devices, temperature gauges and light intensity, battery systems and control panels. The results showed that the automatic transfer switch must attention to the design of an accurate and meticulous to avoid damage to the inverter. So that continuity of service of electric power is maintained. Electric power service using a solar cell system with 2 units of 100 Ah batteries and 6 units of 100 Wp solar panels can serve household electrical loads for 1 day of battery charging and discharging, 1 day of battery charging and 1 day of battery discharging with average electric energy generated at 1485 W-hours. Costs can be saved in 1 month if the price of electricity is Rp. 1352/Kwh, is Rp. 20,104.-/month with an investment cost of Rp. 27,956,000.


Sign in / Sign up

Export Citation Format

Share Document