scholarly journals Quantum algorithms for invariants of triangulated manifolds

2012 ◽  
Vol 12 (9&10) ◽  
pp. 843-863
Author(s):  
Gorjan Alagic ◽  
Edgar A. Bering IV

One of the apparent advantages of quantum computers over their classical counterparts is their ability to efficiently contract tensor networks. In this article, we study some implications of this fact in the case of topological tensor networks. The graph underlying these networks is given by the triangulation of a manifold, and the structure of the tensors ensures that the overall tensor is independent of the choice of internal triangulation. This leads to quantum algorithms for additively approximating certain invariants of triangulated manifolds. We discuss the details of this construction in two specific cases. In the first case, we consider triangulated surfaces, where the triangle tensor is defined by the multiplication operator of a finite group; the resulting invariant has a simple closed-form expression involving the dimensions of the irreducible representations of the group and the Euler characteristic of the surface. In the second case, we consider triangulated 3-manifolds, where the tetrahedral tensor is defined by the so-called Fibonacci anyon model; the resulting invariant is the well-known Turaev-Viro invariant of 3-manifolds.

2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yassine Zouaoui ◽  
Larbi Talbi ◽  
Khelifa Hettak ◽  
Naresh K. Darimireddy

Author(s):  
Kai Li ◽  
Qing-yu Cai

AbstractQuantum algorithms can greatly speed up computation in solving some classical problems, while the computational power of quantum computers should also be restricted by laws of physics. Due to quantum time-energy uncertainty relation, there is a lower limit of the evolution time for a given quantum operation, and therefore the time complexity must be considered when the number of serial quantum operations is particularly large. When the key length is about at the level of KB (encryption and decryption can be completed in a few minutes by using standard programs), it will take at least 50-100 years for NTC (Neighbor-only, Two-qubit gate, Concurrent) architecture ion-trap quantum computers to execute Shor’s algorithm. For NTC architecture superconducting quantum computers with a code distance 27 for error-correcting, when the key length increased to 16 KB, the cracking time will also increase to 100 years that far exceeds the coherence time. This shows the robustness of the updated RSA against practical quantum computing attacks.


2021 ◽  
Vol 48 (3) ◽  
pp. 91-96
Author(s):  
Shigeo Shioda

The consensus achieved in the consensus-forming algorithm is not generally a constant but rather a random variable, even if the initial opinions are the same. In the present paper, we investigate the statistical properties of the consensus in a broadcasting-based consensus-forming algorithm. We focus on two extreme cases: consensus forming by two agents and consensus forming by an infinite number of agents. In the two-agent case, we derive several properties of the distribution function of the consensus. In the infinite-numberof- agents case, we show that if the initial opinions follow a stable distribution, then the consensus also follows a stable distribution. In addition, we derive a closed-form expression of the probability density function of the consensus when the initial opinions follow a Gaussian distribution, a Cauchy distribution, or a L´evy distribution.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


Author(s):  
Giovanni Acampora ◽  
Roberto Schiattarella

AbstractQuantum computers have become reality thanks to the effort of some majors in developing innovative technologies that enable the usage of quantum effects in computation, so as to pave the way towards the design of efficient quantum algorithms to use in different applications domains, from finance and chemistry to artificial and computational intelligence. However, there are still some technological limitations that do not allow a correct design of quantum algorithms, compromising the achievement of the so-called quantum advantage. Specifically, a major limitation in the design of a quantum algorithm is related to its proper mapping to a specific quantum processor so that the underlying physical constraints are satisfied. This hard problem, known as circuit mapping, is a critical task to face in quantum world, and it needs to be efficiently addressed to allow quantum computers to work correctly and productively. In order to bridge above gap, this paper introduces a very first circuit mapping approach based on deep neural networks, which opens a completely new scenario in which the correct execution of quantum algorithms is supported by classical machine learning techniques. As shown in experimental section, the proposed approach speeds up current state-of-the-art mapping algorithms when used on 5-qubits IBM Q processors, maintaining suitable mapping accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1690
Author(s):  
Teague Tomesh ◽  
Pranav Gokhale ◽  
Eric R. Anschuetz ◽  
Frederic T. Chong

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.


Sign in / Sign up

Export Citation Format

Share Document