Quantum algorithm for measuring the eigenvalues of UÄU-1 for a black-box unitary transformation U

2002 ◽  
Vol 2 (3) ◽  
pp. 192-197
Author(s):  
D. Janzing ◽  
T. Beth

Estimating the eigenvalues of a unitary transformation U by standard phase estimation requires the implementation of controlled-U-gates which are not available if U is only given as a black box. We show that a simple trick allows to measure eigenvalues of U\otimesU^\deggar even in this case. Running the algorithm several times allows therefore to estimate the autocorrelation function of the density of eigenstates of U. This can be applied to find periodicities in the energy spectrum of a quantum system with unknown Hamiltonian if it can be coupled to a quantum computer.

2002 ◽  
Vol 2 (3) ◽  
pp. 198-207
Author(s):  
D. Janzing

The well-known algorithm for quantum phase estimation requires that the considered unitary is available as a conditional transformation depending on the quantum state of an ancilla register. We present an algorithm converting an unknown n-qubit pair-interaction Hamiltonian into a conditional one such that standard phase estimation can be applied to measure the energy. Our essential assumption is that the considered system can be brought into interaction with a quantum computer. For large n the algorithm could still be applicable for estimating the density of energy states and might therefore be useful for finding energy gaps in solid states.


2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1549-1556 ◽  
Author(s):  
V. B. BEZERRA ◽  
GEUSA DE A. MARQUES

We consider the problem of a relativistic electron in the presence of a Coulomb potential and a magnetic field in the background spacetime corresponding to a cosmic string. We find the solution of the corresponding Dirac equation and determine the energy spectrum of the particle.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
S. Leontica ◽  
F. Tennie ◽  
T. Farrow

AbstractSimulating the behaviour of complex quantum systems is impossible on classical supercomputers due to the exponential scaling of the number of quantum states with the number of particles in the simulated system. Quantum computers aim to break through this limit by using one quantum system to simulate another quantum system. Although in their infancy, they are a promising tool for applied fields seeking to simulate quantum interactions in complex atomic and molecular structures. Here, we show an efficient technique for transpiling the unitary evolution of quantum systems into the language of universal quantum computation using the IBM quantum computer and show that it is a viable tool for compiling near-term quantum simulation algorithms. We develop code that decomposes arbitrary 3-qubit gates and implement it in a quantum simulation first for a linear ordered chain to highlight the generality of the approach, and second, for a complex molecule. We choose the Fenna-Matthews-Olsen (FMO) photosynthetic protein because it has a well characterised Hamiltonian and presents a complex dissipative system coupled to a noisy environment that helps to improve the efficiency of energy transport. The method can be implemented in a broad range of molecular and other simulation settings.


1995 ◽  
Vol 10 (05) ◽  
pp. 399-407 ◽  
Author(s):  
A. STERN ◽  
I. YAKUSHIN

We perform a deformation quantization of the classical isotropic rigid rotator. The resulting quantum system is not invariant under the usual SU (2) × SU (2) chiral symmetry, but instead [Formula: see text]. We give the energy spectrum for the resulting system.


2007 ◽  
Vol 05 (01n02) ◽  
pp. 223-228 ◽  
Author(s):  
ANNALISA MARZUOLI ◽  
MARIO RASETTI

We resort to considerations based on topological quantum field theory to outline the development of a possible quantum algorithm for the evaluation of the permanent of a 0 - 1 matrix. Such an algorithm might represent a breakthrough for quantum computation, since computing the permanent is considered a "universal problem", namely, one among the hardest problems that a quantum computer can efficiently handle.


2020 ◽  
pp. 258-270
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Henry and Eve have finally tested their quantum computer (QC) with resounding success! It may enable much faster and better modelling of complex pharmaceutical designs, long-term weather forecasts or brain process simulations than classical computers. A 1,000-qubit QC can process in a single step 21000 possible superposition states: its speedup is exponential in the number of qubits. Yet this wondrous promise requires overcoming the enormous hurdle of decoherence, which is why progress towards a large-scale QC has been painstakingly slow. To their dismay, their QC is “expropriated for the quantum revolution” in order to share quantum information among all mankind and thus impose a collective entangled state of mind. They set out to foil this totalitarian plan and restore individuality by decohering the quantum information channel. The appendix to this chapter provide a flavor of QC capabilities through a quantum algorithm that can solve problems exponentially faster than classical computers.


Sign in / Sign up

Export Citation Format

Share Document