scholarly journals TEM study of boron phosphide: Discovery of rhombohedral BP

Author(s):  
Boris Kulnitskiy ◽  
Vladimir Blank ◽  
Tatyana Gordeeva ◽  
Vladimir Mukhanov ◽  
Vladimir Solozhenko

Microstructure of sphalerite (3C) boron phosphide, BP, produced by self-propagated high-temperature synthesis has been studied by high-resolution transmission electron microscopy. Along with numerous twins on the {111}3C plane, layers of wurtzite (2H) polymorphic modification and previously unknown for BP rhombohedral (3R) structure were found which indicates trimorphism of BP.

2011 ◽  
Vol 17 (S2) ◽  
pp. 504-505
Author(s):  
M Bonds ◽  
T LaGrange ◽  
G Campbell ◽  
N Browning

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Author(s):  
Zhanbing He ◽  
Jean-Luc Maurice ◽  
Haikun Ma ◽  
Yanguo Wang ◽  
Hua Li ◽  
...  

Quasicrystals have special crystal structures with long-range order, but without translational symmetry. Unexpectedly, carousel-like successive flippings of groups of atoms inside the ∼2 nm decagonal structural subunits of the decagonal quasicrystal Al60Cr20Fe10Si10 were directly observed using in situ high-temperature high-resolution transmission electron microscopy imaging. The observed directionally successive phason flips occur mainly clockwise and occasionally anticlockwise. The origin of these directional phason flips is analyzed and discussed.


2013 ◽  
Vol 747-748 ◽  
pp. 124-131 ◽  
Author(s):  
Li Yuan Sheng ◽  
Jian Ting Guo ◽  
Chao Yuan ◽  
F. Yang ◽  
G.S. Li ◽  
...  

The Ni3Al and Ni3Al-B-Cr alloys were fabricated by the self-propagation high-temperature synthesis with hot extrusion method. Their microstructure and mechanical properties were studied by using combination of X-ray diffraction, optical microscopy, transmission electron microscopy and compression test. Analysis of X-ray spectra exhibited that the elemental powders had been transformed to the Ni3Al phase after the self-propagation high-temperature synthesis processing. Microstructure examination showed that the alloy without extrusion consisted of coarse and fine grains, but the subsequent hot extrusion procedure homogenized the grain size and densified the alloy obviously. Transmission electron microscopy observations on the Ni3Al alloy revealed that Ni3Al, γ-Ni and Al2O3 particles were the main phases. When the boron and chromium were added, besides the β-NiAl phase, α-Cr phase and some Cr7Ni3 particles with stacking faults inside were observed. In addition, a lot of substructure and high-density dislocation arrays were observed in the extruded part, which indicated that the subsequent extrusion had led to great deformation and partly recrystallizing in the alloy. Moreover, the subsequent extrusion procedure redistributed the Al2O3 particles and eliminated the γ-Ni. These changes were helpful to refine the microstructure and weaken the misorientation. The mechanical test showed that the self-propagation high-temperature synthesis with hot extrusion improved the mechanical properties of the Ni3Al alloy significantly. The addition of B and Cr in Ni3Al alloy increased the mechanical properties further, but the compressive strength of the alloy was still lower than that synthesized by combustion. Finally, the self-propagation high-temperature synthesis with hot extrusion was a good method to prepare Ni3Al alloy from powder.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Yucheng Lan ◽  
Hui Wang ◽  
Dezhi Wang ◽  
Gang Chen ◽  
Zhifeng Ren

New TEM grids coated with ultrathin amorphous films have been developed using atomic layer deposition technique. The amorphous films can withstand temperatures over in air and in vacuum when the thickness of the film is 2 nm, and up to in air when the thickness is 25 nm, which makes heating TEM grids with nanoparticles up to in air and immediate TEM observation without interrupting the nanoparticles possible. Such coated TEM grids are very much desired for applications in high-temperature high-resolution transmission electron microscopy.


Author(s):  
James R. Gallagher ◽  
Paul Boldrin ◽  
Gary B. Combes ◽  
Don Ozkaya ◽  
Dan I. Enache ◽  
...  

The effectiveness of Mg as a promoter of Co-Ru/γ-Al 2 O 3 Fischer–Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of Mg x Al 2 O 3+ x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO 3 phases. After subsequent Co-Ru impregnation Mg x Co 3− x O 4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into Mg x Co 3− x O 4 . Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in Mg x Co 3− x O 4 . Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature.


2013 ◽  
Vol 664 ◽  
pp. 449-453 ◽  
Author(s):  
Sutham Niyomwas

The Si-SiC nanocomposites have been synthesized by self-propagating high temperature synthesis (SHS) from natural precursors. The effects of difference amount of added NaCl from 0 to 0.75 moles to the reactants on the Si-SiC conversion and particle size were investigated. The reaction were carried out in a SHS reactor under static argon gas at the pressure of 0.5 MPa. The nanocomposite results have been characterized by scanning electron microscope, Transmission Electron Microscopy and X-ray diffraction. The results showed that the production of nano-composite materials using SHS process is feasible and agree well with the thermodynamics calculations.


Sign in / Sign up

Export Citation Format

Share Document