scholarly journals Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes

Author(s):  
Xinzhe Zhu ◽  
Chi-Hung Ho ◽  
Xiaonan Wang

<p><a></a><a>The production process of many active pharmaceutical ingredients such as sitagliptin could cause severe environmental problems due to the use of toxic chemical materials and production infrastructure, energy consumption and wastes treatment. The environmental impacts of sitagliptin production process were estimated with life cycle assessment (LCA) method, which suggested that the use of chemical materials provided the major environmental impacts. Both methods of Eco-indicator 99 and ReCiPe endpoints confirmed that chemical feedstock accounted 83% and 70% of life-cycle impact, respectively. Among all the chemical materials used in the sitagliptin production process, </a><a>trifluoroacetic anhydride </a>was identified as the largest influential factor in most impact categories according to the results of ReCiPe midpoints method. Therefore, high-throughput screening was performed to seek for green chemical substitutes to replace the target chemical (i.e. trifluoroacetic anhydride) by the following three steps. Firstly, thirty most similar chemicals were obtained from two million candidate alternatives in PubChem database based on their molecular descriptors. Thereafter, deep learning neural network models were developed to predict life-cycle impact according to the chemicals in Ecoinvent v3.5 database with known LCA values and corresponding molecular descriptors. Finally, 1,2-ethanediyl ester was proved to be one of the potential greener substitutes after the LCA data of these similar chemicals were predicted using the well-trained machine learning models. The case study demonstrated the applicability of the novel framework to screen green chemical substitutes and optimize the pharmaceutical manufacturing process.</p>

2020 ◽  
Author(s):  
Xinzhe Zhu ◽  
Chi-Hung Ho ◽  
Xiaonan Wang

<p><a></a><a>The production process of many active pharmaceutical ingredients such as sitagliptin could cause severe environmental problems due to the use of toxic chemical materials and production infrastructure, energy consumption and wastes treatment. The environmental impacts of sitagliptin production process were estimated with life cycle assessment (LCA) method, which suggested that the use of chemical materials provided the major environmental impacts. Both methods of Eco-indicator 99 and ReCiPe endpoints confirmed that chemical feedstock accounted 83% and 70% of life-cycle impact, respectively. Among all the chemical materials used in the sitagliptin production process, </a><a>trifluoroacetic anhydride </a>was identified as the largest influential factor in most impact categories according to the results of ReCiPe midpoints method. Therefore, high-throughput screening was performed to seek for green chemical substitutes to replace the target chemical (i.e. trifluoroacetic anhydride) by the following three steps. Firstly, thirty most similar chemicals were obtained from two million candidate alternatives in PubChem database based on their molecular descriptors. Thereafter, deep learning neural network models were developed to predict life-cycle impact according to the chemicals in Ecoinvent v3.5 database with known LCA values and corresponding molecular descriptors. Finally, 1,2-ethanediyl ester was proved to be one of the potential greener substitutes after the LCA data of these similar chemicals were predicted using the well-trained machine learning models. The case study demonstrated the applicability of the novel framework to screen green chemical substitutes and optimize the pharmaceutical manufacturing process.</p>


2021 ◽  
Vol 306 ◽  
pp. 04019
Author(s):  
Retno Astuti ◽  
Bagus Candra Kurniawan ◽  
Danang Triagus Setiyawan

This study aims to evaluate and identify potential environmental contaminants from the production process of ground coffee. The research was conducted at CV. XYZ in Bali province, Indonesia which processes dry coffee beans into ground coffee with the trademark “Kopi PQR”. Life Cycle Assessment (LCA) was used to identify and evaluate environmental impacts by applying the Environmental Design of Industrial Product (EDIP) method in the SimaPro 8.20 software. The Analytical Network Process (ANP) was then used to determine the priority of improvement recommendations. The results showed that the “Kopi PQR” production process had several environmental impacts, i.e. water acute eco toxicity, chronic water eco toxicity, and human toxicity soil. This impact resulted from the use of the use of plastic packaging which was difficult to decompose, and the accumulation of coffee powder waste. The recommendation for recycling coffee powder waste was chosen as an alternative for improvement in CV. XYZ.


2019 ◽  
Vol 23 (2) ◽  
pp. 238-257
Author(s):  
Maria G. Lucchetti ◽  
Luisa Paolotti ◽  
Lucia Rocchi ◽  
Antonio Boggia

Abstract The present work aims to analyse the environmental advantages of a production process that applies circular economy. The study examines a product that is generated through the use of a certain percentage of recovered secondary materials, thus helping to avoid impacts related to the disposal of these materials and preserving the ecosystems from indiscriminate excessive natural resources extraction. The product analysed is an ecological detergent (“Ri-Detersivo” – Re-Detergent), produced by the company Tea Natura, mainly composed of regenerated vegetable oils coming from food industry. The methodology used in this paper is Life Cycle Assessment (LCA). A partial LCA will be carried out here, arriving at the saponification phase, and comparing the environmental impacts deriving from the Re-Detergent production process with those of a traditional soap, comparable to that studied in terms of function. The analysis of the case study found that the use of regenerated vegetable oils for the production of soap allows to significantly reduce the environmental impacts compared to the use of coconut oil imported from third countries.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4502 ◽  
Author(s):  
Minliang Yang ◽  
Kurt A. Rosentrater

Bioproducts have attracted much attention in recent years due to the increasing environmental concerns about petroleum products. In this study, we aimed to explore potential environmental impacts and economic feasibility of pressure sensitive bio-adhesive (PSA) produced from the reversible addition-fragmentation chain transfer polymerization process. A detail process model of pressure sensitive bio-adhesive was developed in order to thoroughly understand both economic and environmental impacts of this production process. Life cycle assessment results showed that the overall environmental impacts of bio-adhesive was ~30% lower compared to the petro-adhesive’s production process. The minimum selling price for this pressure sensitive bio-adhesive was calculated as $3.48/kg. Sensitivity analysis results indicated that raw materials costs had the most significant impact on pressure sensitive bio-adhesive’s selling price, followed by total capital investment. Electricity sources had larger environmental impacts to the overall bio-adhesive production process compared to transportation distance and product yield. These results highlight the environmental advantage and potential economic competency of this pressure sensitive bio-based adhesive.


2022 ◽  
Vol 14 (2) ◽  
pp. 654
Author(s):  
Mattia Rapa ◽  
Salvatore Ciano

Olive oil is one of the most globally recognized high-value products, with 4 million hectares cultivated in the Mediterranean area. The production process involves many stages: farming, extraction, packing, and waste treatment. Each one of these stages should present critical points for the environmental impacts, and for this reason, the entire sector is adopting mitigation strategies to begin to be more sustainable. The mitigation actions’ efficiency should be evaluated through environmental indicators or environmental impact assessment by Life Cycle Assessment (LCA). This review aimed to carry out an overview of recent papers (2011–2021) involving an LCA study in the olive oil supply chain by giving a framework of what is included in LCA studies and highlighting the main contributors to environmental impacts. The main scholarly literature databases have been exploited, highlighting a great increase in publications, especially from the producer countries. The review results reflect the heterogeneity of the production process. However, the use of pesticides, fertilizers, water, and fuel for machinery heavily weigh on the farming stage’s environmental impact. Finally, special focus was given to key elements of LCA studies in the olive oil supply chain, such as functional unit, system boundaries, impact categories, calculation method, and software widely used.


Author(s):  
Xabier Rodríguez-Martínez ◽  
Enrique Pascual-San-José ◽  
Mariano Campoy-Quiles

This review article presents the state-of-the-art in high-throughput computational and experimental screening routines with application in organic solar cells, including materials discovery, device optimization and machine-learning algorithms.


2021 ◽  
Vol 11 (7) ◽  
pp. 2964
Author(s):  
Gregor Braun ◽  
Claudia Som ◽  
Mélanie Schmutz ◽  
Roland Hischier

The textile industry is recognized as being one of the most polluting industries. Thus, the European Union aims to transform the textile industry with its “European Green Deal” and “Circular Economy Action Plan”. Awareness regarding the environmental impact of textiles is increasing and initiatives are appearing to make more sustainable products with a strong wish to move towards a circular economy. One of these initiatives is wear2wearTM, a collaboration consisting of multiple companies aiming to close the loop for polyester textiles. However, designing a circular product system does not lead automatically to lower environmental impacts. Therefore, a Life Cycle Assessment study has been conducted in order to compare the environmental impacts of a circular with a linear workwear jacket. The results show that a thoughtful “circular economy system” design approach can result in significantly lower environmental impacts than linear product systems. The study illustrates at the same time the necessity for Life Cycle Assessment practitioners to go beyond a simple comparison of one product to another when it comes to circular economy. Such products require a wider system analysis approach that takes into account multiple loops, having interconnected energy and material flows through reuse, remanufacture, and various recycling practices.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


Sign in / Sign up

Export Citation Format

Share Document