Reproducing the Invention of a Named Reaction: Predicting Unseen Chemical Reactions via Zero-Shot Learning

Author(s):  
An Su ◽  
Ling Wang ◽  
Xinqiao Wang ◽  
Chengyun Zhang ◽  
Hongliang Duan

<div> The study focuses on the proof-of-concept that the human invention of a named reaction can be reproduced by the zero-shot learning version of transformer.</div><div>While state-of-art reaction prediction machine learning models can predict chemical reactions through the transfer learning of thousands of training samples with the same reaction types as the ones to predict, how to prepare the models to predict truly "unseen" reactions remains a question. We aim to equip the transformer model with the ability to predict unseen reactions following the concept of "zero-shot learning". To find what kind of auxiliary information is needed, we reproduce the human invention of the Chan-Lam coupling reaction where the inventor was inspired by two existing reactions---Suzuki reaction and Barton's bismuth arylation reaction. After training with the samples from these two reactions as well as the USPTO dataset, the transformer model can pre-dict the Chan-Lam coupling reaction with 55.7% top-1 accuracy which is a huge im-provement comparing to 17.2% from the model trained with the USPTO dataset only. Our model also mimics the later stage of this history where the initial case of Chan-Lam coupling reaction was generalized to a wide range of reactants and reagents via the "one-shot learning" approach. The results of this study show that having existing reactions as auxiliary information can help the transformer predict unseen reactions and providing just one or few samples of the unseen reaction can boost the model's gener-alization ability.<br></div>

2021 ◽  
Author(s):  
An Su ◽  
Ling Wang ◽  
Xinqiao Wang ◽  
Chengyun Zhang ◽  
Hongliang Duan

<div> The study focuses on the proof-of-concept that the human invention of a named reaction can be reproduced by the zero-shot learning version of transformer.</div><div>While state-of-art reaction prediction machine learning models can predict chemical reactions through the transfer learning of thousands of training samples with the same reaction types as the ones to predict, how to prepare the models to predict truly "unseen" reactions remains a question. We aim to equip the transformer model with the ability to predict unseen reactions following the concept of "zero-shot learning". To find what kind of auxiliary information is needed, we reproduce the human invention of the Chan-Lam coupling reaction where the inventor was inspired by two existing reactions---Suzuki reaction and Barton's bismuth arylation reaction. After training with the samples from these two reactions as well as the USPTO dataset, the transformer model can pre-dict the Chan-Lam coupling reaction with 55.7% top-1 accuracy which is a huge im-provement comparing to 17.2% from the model trained with the USPTO dataset only. Our model also mimics the later stage of this history where the initial case of Chan-Lam coupling reaction was generalized to a wide range of reactants and reagents via the "one-shot learning" approach. The results of this study show that having existing reactions as auxiliary information can help the transformer predict unseen reactions and providing just one or few samples of the unseen reaction can boost the model's gener-alization ability.<br></div>


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Praveenkumar Ramprakash Upadhyay ◽  
Vivek Srivastava

AbstractIn the search of new materials for developing clean catalytic organic reactions, our team engineered graphene based palladium (Pd) nanocomposites and tested them as catalysts for ionic liquid mediated Suzuki cross coupling reaction. The effects of various reaction parameters, such as solvent, base, time and temperature, were investigated for the Suzuki reaction. The optimized protocol was applied to a wide range of substituted aryl/hetroaryl halides along with various aryl boronic acids and afforded the corresponding reaction products in good to excellent yield. The proposed Pd/reduced graphene oxide (rGO) catalyzed Suzuki reaction protocol was also exploited for the synthesis of unique indazole derivatives. The developed catalytic system circumvents the use of phosphine ligands, with an added advantage of easy Pd catalyst recovery up to eight times.


2019 ◽  
Vol 5 (6) ◽  
pp. eaaw9516 ◽  
Author(s):  
Shengyang Ni ◽  
Chun-Xiao Li ◽  
Yu Mao ◽  
Jianlin Han ◽  
Yi Wang ◽  
...  

The reductive cross-coupling of sp3-hybridized carbon centers represents great synthetic values and insurmountable challenges. In this work, we report a nickel-catalyzed deaminative cross-electrophile coupling reaction to construct C(sp)─C(sp3), C(sp2)─C(sp3), and C(sp3)─C(sp3) bonds. A wide range of coupling partners including aryl iodides, bromoalkynes, or alkyl bromides are stitched with alkylpyridinium salts that derived from the corresponding primary amines. The advantages of this methodology are showcased in the two-step synthesis of the key lactonic moiety of (+)-compactin and (+)-mevinolin. The one-pot procedure without isolation of alkylpyridinium tetrafluoroborate salt is also proven to be successful. This cross-coupling strategy of two electrophiles provides a highly valuable vista for the convenient installation of alkyl substituents and late functionalizations of sp3 carbons.


2017 ◽  
Author(s):  
Hung-En Lai ◽  
Alan M. C. Obled ◽  
Soo Mei Chee ◽  
Rhodri M. Morgan ◽  
Rosemary Lynch ◽  
...  

AbstractNatural products and their analogues are often challenging to synthesise due to their complex scaffolds and embedded functional groups. Solely relying on engineering the biosynthesis of natural products may lead to limited compound diversity. Integrating synthetic biology with synthetic chemistry allows rapid access to much more diverse portfolios of xenobiotic compounds which may accelerate the discovery of new therapeutics. As a proof-of-concept, by supplementing an Escherichia coli strain expressing the violacein biosynthesis pathway with eight tryptophan substrate analogues or tryptophan halogenase RebH in vivo, 68 new-to-nature analogues of violacein were generated, demonstrating extraordinary promiscuity of the violacein biosynthesis pathway. Furthermore, 20 new derivatives were generated from brominated violacein analogues via Suzuki-Miyaura cross-coupling reaction directly using the crude extract without prior purification. Herein, we demonstrate a flexible and rapid approach to access diverse chemical space that can be applied to a wide range of natural product scaffolds.


2020 ◽  
Vol 56 (65) ◽  
pp. 9368-9371 ◽  
Author(s):  
Ling Wang ◽  
Chengyun Zhang ◽  
Renren Bai ◽  
Jianjun Li ◽  
Hongliang Duan

A proof-of-concept methodology for addressing small amounts of chemical data using transfer learning is presented.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


2021 ◽  
pp. 104973232199379
Author(s):  
Olaug S. Lian ◽  
Sarah Nettleton ◽  
Åge Wifstad ◽  
Christopher Dowrick

In this article, we qualitatively explore the manner and style in which medical encounters between patients and general practitioners (GPs) are mutually conducted, as exhibited in situ in 10 consultations sourced from the One in a Million: Primary Care Consultations Archive in England. Our main objectives are to identify interactional modes, to develop a classification of these modes, and to uncover how modes emerge and shift both within and between consultations. Deploying an interactional perspective and a thematic and narrative analysis of consultation transcripts, we identified five distinctive interactional modes: question and answer (Q&A) mode, lecture mode, probabilistic mode, competition mode, and narrative mode. Most modes are GP-led. Mode shifts within consultations generally map on to the chronology of the medical encounter. Patient-led narrative modes are initiated by patients themselves, which demonstrates agency. Our classification of modes derives from complete naturally occurring consultations, covering a wide range of symptoms, and may have general applicability.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


2021 ◽  
Vol 11 (8) ◽  
pp. 3397
Author(s):  
Gustavo Assunção ◽  
Nuno Gonçalves ◽  
Paulo Menezes

Human beings have developed fantastic abilities to integrate information from various sensory sources exploring their inherent complementarity. Perceptual capabilities are therefore heightened, enabling, for instance, the well-known "cocktail party" and McGurk effects, i.e., speech disambiguation from a panoply of sound signals. This fusion ability is also key in refining the perception of sound source location, as in distinguishing whose voice is being heard in a group conversation. Furthermore, neuroscience has successfully identified the superior colliculus region in the brain as the one responsible for this modality fusion, with a handful of biological models having been proposed to approach its underlying neurophysiological process. Deriving inspiration from one of these models, this paper presents a methodology for effectively fusing correlated auditory and visual information for active speaker detection. Such an ability can have a wide range of applications, from teleconferencing systems to social robotics. The detection approach initially routes auditory and visual information through two specialized neural network structures. The resulting embeddings are fused via a novel layer based on the superior colliculus, whose topological structure emulates spatial neuron cross-mapping of unimodal perceptual fields. The validation process employed two publicly available datasets, with achieved results confirming and greatly surpassing initial expectations.


Sign in / Sign up

Export Citation Format

Share Document