DNA-Directed Patterning for Versatile Validation and Characterization of a Lipid-Based Nanoparticle Model of SARS-CoV-2

Author(s):  
Molly Kozminsky ◽  
Thomas Carey ◽  
Lydia L. Sohn

Lipid-based nanoparticles have risen to the forefront of the COVID-19 pandemic—from encapsulation of vaccine components to modeling the virus, itself. Their rapid development in the face of the volatile nature of the pandemic requires high-throughput, highly flexible methods for characterization. DNA-directed patterning is a versatile method to immobilize and segregate lipid-based nanoparticles for subsequent analysis. DNA-directed patterning selectively conjugates oligonucleotides onto a glass substrate and then hybridizes them to complementary oligonucleotides tagged to the liposomes, thereby patterning them with great control and precision. The power of this method is demonstrated by characterizing a novel recapitulative lipid-based nanoparticle model of SARS-CoV-2 —S-liposomes— which present the SARS-CoV-2 spike (S) protein on their surfaces. Patterning of a mixture of S-liposomes and liposomes that display the tetraspanin CD63 into discrete regions of a substrate is used to show that ACE2 specifically binds to S-liposomes. Importantly, DNA-directed patterning of S-liposomes is used to verify the performance of a commercially available neutralizing antibody against the S protein. Ultimately, the introduction of S-liposomes to ACE2-expressing cells demonstrates the biological relevance of DNA-directed patterning. Overall, DNA-directed patterning enables a wide variety of custom assays for the characterization of any lipid-based nanoparticle.

2021 ◽  
Author(s):  
Molly Kozminsky ◽  
Thomas Carey ◽  
Lydia L. Sohn

Lipid-based nanoparticles have risen to the forefront of the COVID-19 pandemic—from encapsulation of vaccine components to modeling the virus, itself. Their rapid development in the face of the volatile nature of the pandemic requires high-throughput, highly flexible methods for characterization. DNA-directed patterning is a versatile method to immobilize and segregate lipid-based nanoparticles for subsequent analysis. DNA-directed patterning selectively conjugates oligonucleotides onto a glass substrate and then hybridizes them to complementary oligonucleotides tagged to the liposomes, thereby patterning them with great control and precision. The power of this method is demonstrated by characterizing a novel recapitulative lipid-based nanoparticle model of SARS-CoV-2 —S-liposomes— which present the SARS-CoV-2 spike (S) protein on their surfaces. Patterning of a mixture of S-liposomes and liposomes that display the tetraspanin CD63 into discrete regions of a substrate is used to show that ACE2 specifically binds to S-liposomes. Importantly, DNA-directed patterning of S-liposomes is used to verify the performance of a commercially available neutralizing antibody against the S protein. Ultimately, the introduction of S-liposomes to ACE2-expressing cells demonstrates the biological relevance of DNA-directed patterning. Overall, DNA-directed patterning enables a wide variety of custom assays for the characterization of any lipid-based nanoparticle.


2011 ◽  
Vol 1344 ◽  
Author(s):  
Jennifer Reiber Kyle ◽  
Ali Guvenc ◽  
Wei Wang ◽  
Jian Lin ◽  
Maziar Ghazinejad ◽  
...  

ABSTRACTThe exceptional electrical, optical, and mechanical properties of graphene make it a promising material for many industrial applications such as solar cells, semiconductor devices, and thermal heat sinks. However, the greatest obstacle in the use of graphene in industry is high-throughput scaling of its production and characterization. Chemical-vapor deposition growth of graphene has allowed for industrial-scale graphene production. In this work we introduce complimentary high-throughput metrology technique for characterization of chemical-vapor deposition-grown graphene. This metrology technique provides quick identification of thickness and uniformity of entire large-area chemical-vapor deposition-grown graphene sheets on a glass substrate and allows for easy identification of folds and cracks in the graphene samples. This metrology technique utilizes fluorescence quenching microscopy, which is based on resonant energy transfer between a dye molecule and graphene, to increase allow graphene visualization on the glass substrate and increase the contrast between graphene layers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monica Wolfe ◽  
Sean Webb ◽  
Yaroslav Chushak ◽  
Rachel Krabacher ◽  
Yi Liu ◽  
...  

AbstractRapid design, screening, and characterization of biorecognition elements (BREs) is essential for the development of diagnostic tests and antiviral therapeutics needed to combat the spread of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To address this need, we developed a high-throughput pipeline combining in silico design of a peptide library specific for SARS-CoV-2 spike (S) protein and microarray screening to identify binding sequences. Our optimized microarray platform allowed the simultaneous screening of ~ 2.5 k peptides and rapid identification of binding sequences resulting in selection of four peptides with nanomolar affinity to the SARS-CoV-2 S protein. Finally, we demonstrated the successful integration of one of the top peptides into an electrochemical sensor with a clinically relevant limit of detection for S protein in spiked saliva. Our results demonstrate the utility of this novel pipeline for the selection of peptide BREs in response to the SARS-CoV-2 pandemic, and the broader application of such a platform in response to future viral threats.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Author(s):  
Alfred Ludwig ◽  
Mona Nowak ◽  
Swati Kumari ◽  
Helge S. Stein ◽  
Ramona Gutkowski ◽  
...  

Author(s):  
Marc J. Stern

Chapter 9 contains five vignettes, each based on real world cases. In each, a character is faced with a problem and uses multiple theories within the book to help him or her develop and execute a plan of action. The vignettes provide concrete examples of how to apply the theories in the book to solving environmental problems and working toward environmental sustainability in a variety of contexts, including managing visitors in a national park, developing persuasive communications, designing more collaborative public involvement processes, starting up an energy savings program within a for-profit corporation, and promoting conservation in the face of rapid development.


Sign in / Sign up

Export Citation Format

Share Document