scholarly journals Diagnosis of thrombotic thrombocytopenic purpura

2020 ◽  
Vol 92 (12) ◽  
pp. 207-217
Author(s):  
G. M. Galstyan ◽  
E. E. Klebanova

Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening disease, disease, characterised by microangiopathic hemolytic anaemia, consumption thrombocytopenia, and organ dysfunction. The pathogenesis of TTP is attributed to the deficiency in the activity of the metalloproteinase ADAMTS13, specific von Willebrand factor cleaving protease. TTP is suspected when detecting microangiopathic hemolytic anemia, thrombocytopenia, damage to various organs. Diagnosis of TTP is confirmed by the detection of ADAMTS13 activity in plasma less than 10%. Plasma samples for the study of ADAMTS13 activity should be taken before the start of plasma transfusions or plasma exchange. In patients with severe ADAMTS-13 deficiency autoantibodies anti-ADAMTS13 and inhibitor ADAMTS13 should be investigated. Anti-ADAMTS13 antibodies belonging to IgG not always have inhibitory effects. The inhibitory effect of anti-ADAMTS13 antibodies is confirmed by mixing test. All patients with the first established diagnosis of TTP should be examined for mutations of the ADAMTS13 gene.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 523-523
Author(s):  
Wenjing Cao ◽  
Alicia Veninga ◽  
Elizabeth M. Staley ◽  
Adam Miszta ◽  
Nicole Kocher ◽  
...  

Abstract Background: Immune thrombotic thrombocytopenic purpura (iTTP), a potentially fatal hematological emergency, is primarily caused by acquired deficiency of ADAMTS13 activity due to autoantibodies. Immunoglobulin G (IgG)-type autoantibodies bind ADAMTS13 and inhibit its ability to cleave endothelium-derived ultra large von Willebrand factor (ULVWF). However, it remains poorly understood whether plasma VWF status can be used as a disease marker for diagnosis and monitoring therapy in patients with acute iTTP. Objective: To address this question, we determined plasma levels of VWF antigen (VWF:Ag), collagen-binding activity (VWF:CB), active forms of VWF (VWF:Ac), and VWF multimers in iTTP patients during acute episode and in early remission. Patients and Methods: From the Alabama registry, we identified 69 unique patients with a confirmed diagnosis of iTTP in whom plasma ADAMTS13 activity was <10 U/dL with positive inhibitors and elevated anti-ADAMTS13 IgGs. Of 69 patients, 21 had longitudinal plasma samples collected. Plasma samples from 56 healthy individuals, who did not have a hematological disease, cancer, and infection, were recruited as controls. Plasma levels of VWF:Ag, VWF:CB, and VWF:Ac were determined by an ELISA-based assay. Plasma VWF multimer distribution was assessed by an in-gel Western blotting assay following electrophoresis on a 1% SDS-agarose gel. Results: The mean age for our cohort iTTP patients was 43.9 ± 13.4 years. Twenty-six patients were male and 43 were female with male to female ratio of 1 to 1.7. Fifty-three patients were African American descents, 14 Caucasians, 1 Hispanic, and 1 unknown race. Plasma levels of VWF:Ag in acute iTTP patients were 289.4 ± 17.7%, significantly increased compared with those in the healthy controls (144.9 ± 7.6%) (p<0.0001); plasma levels of VWF:CB in these patients were 241 ± 17.9%, also significantly elevated compared with those in the healthy controls (149.9 ± 12.01%) (p=0.0001); additionally, plasma levels of VWF:Ac (304.6 ± 23.2%), assessed by its ability to bind anti-VWF-A1 nanobody, were more dramatically elevated compared with those in the controls (101.6 ± 5.9%) (p<0.0001). More interestingly, while the ratios of VWF:CB to VWF:Ag in patients with acute iTTP (0.8 ± 0.04) were lower than those in the healthy controls (1.0 ± 0.05) (p=0.0036), the ratios of VWF:Ac to VWF:Ag were significantly higher in patients with acute episode (1.2 ± 0.1) than those in the controls (0.8 ± 0.05) (p=0.0003). Furthermore, there was no statistically significant difference in the patient plasma levels of VWF:Ag (p=0.69) and VWF:CB (p=0.08) during acute episode and during early remission. However, the plasma levels of VWF:Ac in patients with acute disease were significantly higher than those in the early remission (p=0.002). Surprisingly, 90% (36/40) of out iTTP patients during acute episode showed the presence of ULVWF in their plasma using in-gel Western blotting, which allows the ULVWF to be detected without the transfer step to avoid any potential loss of larger VWF multimers during protein transfer. These ULVWF multimers disappeared in 3/4 iTTP patients in remission when ADAMTS13 activity recovered. In 28 healthy control samples, only one showed ULVWF. Conclusion: Our results demonstrate, for the first time in a large cohort, that active forms of VWF and ultra large VWF multimers are present in iTTP patient's plasma during the acute period, which is reduced or disappears during the early remission. Therefore, measuring active forms of VWF and ultra large VWF multimers may aid in diagnosis of iTTP and help monitoring of disease processes following therapy. Our ongoing study is to determine whether these biomarkers can be used to predict responses to treatment and long-term outcome. Disclosures Zheng: Alexion: Research Funding, Speakers Bureau.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2532-2532
Author(s):  
Giuseppe Bettoni ◽  
Luca A Lotta ◽  
Dario Consonni ◽  
Dino FA Motti ◽  
Roberta Palla ◽  
...  

Abstract Abstract 2532 Background: Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening disease characterized by acute episodes of thrombocytopenia and microangiopathic hemolytic anemia due to disseminated microvascular thrombosis. Up to 40% of patients with TTP who survive the first acute disease episode develop one or more recurrent episodes. The severe deficiency of the von Willebrand factor (VWF) cleaving protease ADAMTS13 in plasma and the presence of anti-ADAMTS13 autoantibodies during both acute presentation and disease remission are associated with increased risk for recurrence. However, additional markers are needed for an accurate prediction of the risk for recurrent disease. Anti-ADAMTS13 autoantibodies of different immunoglobulin (Ig) subclass, specificity and mechanisms of action have been described in patients with the autoimmune form of TTP. We sought to determine the relationships between anti-ADAMTS13 Ig subclasses and risk for recurrence in a large cohort of TTP patients. Patients and methods: TTP was defined using commonly accepted criteria (microangiopathic hemolytic anemia, thrombocytopenia and exclusion of alternative explanation for the disease symptoms). Anti-ADAMTS13 IgM, IgA, IgG and IgG1, IgG2, IgG3 and IgG4 subclasses were measured by ELISA in plasma samples obtained from a total of 115 patients with TTP referred to the Milan TTP registry. Plasma samples had been collected during acute disease presentation (n=60), disease remission (n=92) or both (n=37). ADAMTS13 activity and inhibitor were also measured. The levels of different Ig subclasses were compared between two groups of patients with or without recurrence during follow-up. Patients with a follow-up <24 months were excluded from analysis. Statistical analysis was performed using random effect linear regression models. Results: TTP patients had a median follow-up of 64 months (range 0–399). A total of 11 patients (9.5% of all patients) were followed-up for less than 24 months and excluded from further analysis. Of patients with a follow-up >24 months, 53 (50%) developed recurrences, whereas 51 did not. Recurrences occurred at a median of 24 months (45 days to 11 years) after the first episode and were more common in the first three years (n=35, 67%). Comparison of anti-ADAMTS13 Ig subclasses measured during acute disease presentation in TTP patients with recurrence and in patients without recurrence revealed lower levels of IgA (0.017 vs 0.243, p=0.05), IgG1 (0.076 vs 0.234, p=0.01) and IgG3 (0.126 vs 0.385, p=0.002) in recurrent patients, whereas IgG4 were higher in recurrent TTP (0.712 vs 0.289, p<0.0005). Notably, levels of IgA (random effect, p=0.018), IgG1 (random effect, p=0.005) and IgG3 (random effect, p=0.006) were also associated with lower platelet counts at presentation of acute TTP and IgG3 levels were associated with the number of plasma exchange procedures performed until remission/death. In TTP patients during remission lower levels of ADAMTS13 antigen (49.3 vs 69.5 p<0.0005) and activity (41.4 vs 75.5 p<0.0005) as well as high levels of anti-ADAMTS13 total IgG (21.93 vs 5.13 p=0.007) were confirmed to be predictors of recurrent disease. Other Ig subclasses, measured during remission were not associated with a history of recurrent TTP. The logistic analysis showed an odds of relapse of 4.2 (range 1.5–12 p=0.008) at remission in patients with reduced ADAMTS13 and of 4.4 (range 1.7–11.3; p=0.002) in patients with high levels of IgG, but not in the acute phase. Conclusions: Low values of ADAMTS13 and anti-ADAMTS13 autoantibodies showed and association with a fourfold increase of recurrency risk, while the same result is not confirmed for the acute phase. Anti-ADAMTS13 IgA, IgG1, 3 and 4 subclasses, measured at acute TTP presentation, showed association with recurrent disease in a retrospective cohort study of TTP patients. Ig subclass measurement might be useful to improve recurrence risk prediction in patients with TTP. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 112 (08) ◽  
pp. 297-303 ◽  
Author(s):  
Ilaria Mancini ◽  
Carla Valsecchi ◽  
Luca Lotta ◽  
Louis Deforche ◽  
Silvia Pontiggia ◽  
...  

SummaryCollagen-binding activity (CBA) and FRETS-VWF73 assays are widely adopted methods for the measurement of the plasmatic activity of ADAMTS13, the von Willebrand factor (VWF) cleaving-protease. Accurately assessing the severe deficiency of ADAMTS13 is important in the management of thrombotic thrombocytopenic purpura (TTP). However, non-concordant results between the two assays have been reported in a small but relevant percentage of TTP cases. We investigated whether CBA or FRETS-VWF73 assay reflects ADAMTS13 proteolytic activity in acquired TTP patients with non-concordant measurements. Twenty plasma samples with non-concordant ADAMTS13 activity results, <10% using FRETS-VWF73 and ≥20% using CBA, and 11 samples with concordant results, <10% using either FRETS-VWF73 and CBA assays, were analysed. FRETS-VWF73 was performed in the presence of 1.5 M urea. ADAMTS13 activities were also measured under flow conditions and the VWF multimer pattern was defined in order to verify the presence of ultra-large VWF due to ADAMTS13 deficiency. In FRETS-VWF73 assay with 1.5 M urea, ADAMTS13 activity significantly increased in roughly 50% of the samples with non-concordant results, whereas it remained undetectable in all samples with concordant measurements. Under flow conditions, all tested samples showed reduced ADAMTS13 activity. Finally, samples with non-concordant results showed a ratio of high molecular weight VWF multimers higher than normal. Our results support the use of FRETS-VWF73 over CBA assay for the assessment of ADAMTS13 severe deficiency and indicate urea as one cause of the observed differences.


Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 778-785 ◽  
Author(s):  
Giuseppe Remuzzi ◽  
Miriam Galbusera ◽  
Marina Noris ◽  
Maria Teresa Canciani ◽  
Erica Daina ◽  
...  

Abstract Whether measurement of ADAMTS13 activity may enable physicians to distinguish thrombotic thrombocytopenic purpura (TTP) from hemolytic uremic syndrome (HUS) is still a controversial issue. Our aim was to clarify whether patients with normal or deficient ADAMTS13 activity could be distinguished in terms of disease manifestations and multimeric patterns of plasma von Willebrand factor (VWF). ADAMTS13 activity, VWF antigen, and multimeric pattern were evaluated in patients with recurrent and familial TTP (n = 20) and HUS (n = 29). Results of the collagen-binding assay of ADAMTS13 activity were confirmed in selected samples by testing the capacity of plasma to cleave recombinant VWF A1-A2-A3. Most patients with TTP had complete or partial deficiency of ADAMTS13 activity during the acute phase, and in some the defect persisted at remission. However, complete ADAMTS13 deficiency was also found in 5 of 9 patients with HUS during the acute phase and in 5 patients during remission. HUS patients with ADAMTS13 deficiency could not be distinguished clinically from those with normal ADAMTS13. In a subgroup of patients with TTP or HUS, the ADAMTS13 defect was inherited, as documented by half-normal levels of ADAMTS13 in their asymptomatic parents, consistent with the heterozygous carrier state. In patients with TTP and HUS there was indirect evidence of increased VWF fragmentation, and this occurred also in patients with ADAMTS13 deficiency. In conclusion, deficient ADAMTS13 activity does not distinguish TTP from HUS, at least in the recurrent and familial forms, and it is not the only determinant of VWF abnormalities in these conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Costanza Tripiciano ◽  
Paola Zangari ◽  
Mauro Montanari ◽  
Giovanna Leone ◽  
Laura Massella ◽  
...  

Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy caused by a severely reduced activity of the von Willebrand factor-cleaving protease ADAMTS13. Over 95% of TTPs are acquired, due to autoantibody inhibitors. In children, acquired TTP is a very rare, life-threatening disease. To date, no consensus exists on the treatment strategy of pediatric TTP. We report the cases of two pediatric patients with a diagnosis of TTP, successfully treated with a combination of various therapeutic approaches. Although the patients complained of different sets of symptoms, laboratory data showed Coombs negative hemolytic anemia, renal impairment, and low platelet count in both cases. The diagnosis of acquired TTP was supported by the PLASMIC score and confirmed by the reduction of the ADAMTS13 activity and the presence of anti-ADAMTS13 antibodies. Intravenous immunoglobulin, corticosteroids, and plasma exchange (PEX) were performed without delay. As soon as available, caplacizumab was added to the therapy, with a prompt normalization of platelet count. Nevertheless, ADAMTS13 activity was persistently low, and anti-ADAMTS13 antibodies level was high; thus, a course of rituximab was administered, with persistent normalization of laboratory findings. No adverse events were observed during the treatment. In our experience, the combined use of PEX, caplacizumab, and immunosuppressive therapy during the acute phase of the disease is safe and may have a significant impact on the prognosis with successful clinical outcome and decrease in life-threatening events.


2019 ◽  
pp. 12-13
Author(s):  
K. Ukleba ◽  
L. Gvetadze

Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, severe thrombocytopenia, and organ ischemia linked to disseminated microvascular platelet rich-thrombi. TTP is specifically related to a severe deficiency in ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13), the specific von Willebrand factor-cleaving protease. ADAMTS13 deficiency is most frequently acquired via ADAMTS13 autoantibodies, but rarely, it is inherited via mutations of the ADAMTS13 gane. The first acute episode of TTP usually occurs during adulthood, with a predominant anti – ADAMTS13 autoimmune etiology. In rare cases, however, TTP begins as soon as childhood, with frequent inherited forms. TTP is 2 – fold more frequent in women, and its outcome is characterized by a relapsing tendency.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1219-1221 ◽  
Author(s):  
EC Lian ◽  
FA Siddiqui

Abstract Von Willebrand factor (vWF) has been implicated to function as a cofactor in platelet aggregation induced by thrombotic thrombocytopenic purpura (TTP) plasma. To investigate further this role of vWF, we have used rabbit monospecific anti-FVIII/vWF antibodies and a monoclonal antibody to platelet glycoprotein Ib (GP Ib) that blocks the ristocetin- induced platelet aggregation. The monoclonal anti-platelet GP Ib antibody inhibited the platelet aggregation induced by ristocetin in the presence of normal plasma, but not that by any of the five TTP plasma samples. The TTP plasma samples from five patients were incubated with the monospecific antibodies to FVIII/vWF. In all of the samples, the FVIII/vWF:Ag was drastically reduced; however, there was almost no effect on the platelet-aggregating activity. Therefore, it is concluded that vWF is unlikely to play a major role in platelet aggregation induced by majority of TTP plasmas and that the site of platelet GP Ib, to which vWF binds in the presence of ristocetin, is not involved in TTP plasma-induced aggregation.


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Pier Mannuccio Mannucci ◽  
Flora Peyvandi

Abstract The last 10 years witnessed the publication of many studies on the pathophysiology of thrombotic thrombocytopenic purpura (TTP), a life-threatening disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and multiorgan failure. The most important finding was the identification of a novel metalloprotease, named ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motives), that is involved in the regulation of the size of von Willebrand factor (VWF), a major modulator of platelet adhesion and aggregation in the microcirculation. Inherited or acquired deficiencies of ADAMTS13 impair VWF cleavage, leading in turn to the disseminated formation of platelet-rich thrombi in the micro-circulation and to symptoms of end-organ ischemia. By measuring ADAMTS13 in plasma, it has been clearly shown that patients with inherited TTP have severe ADAMTS13 deficiency. However, patients with acquired TTP present with clinical and laboratory heterogeneity, and there are unequivocal cases of acquired TTP with measurable plasma levels of ADAMTS13. This heterogeneity poses a challenge for understanding the pathogenesis of TTP and selecting appropriate therapies.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1219-1221
Author(s):  
EC Lian ◽  
FA Siddiqui

Von Willebrand factor (vWF) has been implicated to function as a cofactor in platelet aggregation induced by thrombotic thrombocytopenic purpura (TTP) plasma. To investigate further this role of vWF, we have used rabbit monospecific anti-FVIII/vWF antibodies and a monoclonal antibody to platelet glycoprotein Ib (GP Ib) that blocks the ristocetin- induced platelet aggregation. The monoclonal anti-platelet GP Ib antibody inhibited the platelet aggregation induced by ristocetin in the presence of normal plasma, but not that by any of the five TTP plasma samples. The TTP plasma samples from five patients were incubated with the monospecific antibodies to FVIII/vWF. In all of the samples, the FVIII/vWF:Ag was drastically reduced; however, there was almost no effect on the platelet-aggregating activity. Therefore, it is concluded that vWF is unlikely to play a major role in platelet aggregation induced by majority of TTP plasmas and that the site of platelet GP Ib, to which vWF binds in the presence of ristocetin, is not involved in TTP plasma-induced aggregation.


2012 ◽  
Vol 08 (02) ◽  
pp. 89 ◽  
Author(s):  
Muriel Meiring ◽  
Mike Webb ◽  
Dominique Goedhals ◽  
Vernon Louw ◽  
◽  
...  

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening disease characterised by microvascular platelet deposition and thrombus formation in selected organs, resulting in microangiopathic haemolytic anaemia, thrombocytopenia, neurological symptoms and renal failure. Typically a very rare disorder, TTP is being seen with increased frequency in patients infected with the human immunodeficiency virus (HIV). Deficiency of the von Willebrand factor cleavage protease, ADAMTS13, has been implicated as the cause of TTP. However, the pathophysiology of HIV-associated TTP and the thrombotic potential in these patients are not known. This article provides not only an overview of the literature regarding HIV-associated TTP, but also presents new data on this disease. We propose a mechanism for the initial onset of HIV-associated TTP that includes the release of extreme amounts of von Willebrand factor and the downregulation of ADAMTS13 and/or the production of autoantibodies to ADAMTS13.


Sign in / Sign up

Export Citation Format

Share Document