scholarly journals Case Report: Two Cases of Pediatric Thrombotic Thrombocytopenic Purpura Treated With Combined Therapy

2021 ◽  
Vol 9 ◽  
Author(s):  
Costanza Tripiciano ◽  
Paola Zangari ◽  
Mauro Montanari ◽  
Giovanna Leone ◽  
Laura Massella ◽  
...  

Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy caused by a severely reduced activity of the von Willebrand factor-cleaving protease ADAMTS13. Over 95% of TTPs are acquired, due to autoantibody inhibitors. In children, acquired TTP is a very rare, life-threatening disease. To date, no consensus exists on the treatment strategy of pediatric TTP. We report the cases of two pediatric patients with a diagnosis of TTP, successfully treated with a combination of various therapeutic approaches. Although the patients complained of different sets of symptoms, laboratory data showed Coombs negative hemolytic anemia, renal impairment, and low platelet count in both cases. The diagnosis of acquired TTP was supported by the PLASMIC score and confirmed by the reduction of the ADAMTS13 activity and the presence of anti-ADAMTS13 antibodies. Intravenous immunoglobulin, corticosteroids, and plasma exchange (PEX) were performed without delay. As soon as available, caplacizumab was added to the therapy, with a prompt normalization of platelet count. Nevertheless, ADAMTS13 activity was persistently low, and anti-ADAMTS13 antibodies level was high; thus, a course of rituximab was administered, with persistent normalization of laboratory findings. No adverse events were observed during the treatment. In our experience, the combined use of PEX, caplacizumab, and immunosuppressive therapy during the acute phase of the disease is safe and may have a significant impact on the prognosis with successful clinical outcome and decrease in life-threatening events.

2020 ◽  
Vol 92 (12) ◽  
pp. 207-217
Author(s):  
G. M. Galstyan ◽  
E. E. Klebanova

Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening disease, disease, characterised by microangiopathic hemolytic anaemia, consumption thrombocytopenia, and organ dysfunction. The pathogenesis of TTP is attributed to the deficiency in the activity of the metalloproteinase ADAMTS13, specific von Willebrand factor cleaving protease. TTP is suspected when detecting microangiopathic hemolytic anemia, thrombocytopenia, damage to various organs. Diagnosis of TTP is confirmed by the detection of ADAMTS13 activity in plasma less than 10%. Plasma samples for the study of ADAMTS13 activity should be taken before the start of plasma transfusions or plasma exchange. In patients with severe ADAMTS-13 deficiency autoantibodies anti-ADAMTS13 and inhibitor ADAMTS13 should be investigated. Anti-ADAMTS13 antibodies belonging to IgG not always have inhibitory effects. The inhibitory effect of anti-ADAMTS13 antibodies is confirmed by mixing test. All patients with the first established diagnosis of TTP should be examined for mutations of the ADAMTS13 gene.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4568-4568
Author(s):  
Barbara Plaimauer ◽  
Paul Knoebl ◽  
Susanna Skalicky ◽  
Silvia Ferrari ◽  
Katalin Varadi ◽  
...  

Abstract Thrombotic thrombocytopenic purpura (TTP) is characterized by systemic microvascular thrombosis leading to life-threatening ischemia of multiple organs, and is associated with a severe deficiency of the von Willebrand factor (VWF)-cleaving protease ADAMTS13, which permits highly adhesive ultra-large VWF multimers to accumulate in the circulation. Inhibitory and less frequent non-inhibitory anti-ADAMTS13 autoantibodies have been detected in patients suffering from acquired idiopathic TTP. Current treatment with plasma exchange therapy is considered to remove the autoantibodies while concomitantly supplying plasma with the deficient protease. Plasma therapy greatly reduces mortality, nevertheless, still about 10% of the patients die from refractory TTP. To explore the cause of treatment failure in a fatal case of idiopathic acquired TTP we investigated retrospectively the anti-ADAMTS13 immunological profile of a 70-year-old female patient during the course of disease progression. At admittance, she presented with schistocytes, thrombocytopenia and severe neurological disturbances. ADAMTS13 antigen and activity were borderline low in the presence of initially non-inhibiting anti-ADAMTS13 IgG and IgM antibodies, no ADAMTS13 gene aberrations were detected. She had had no previous episodes of TTP. During treatment, the patient received repeated plasma exchanges, supportive extracorporal immunoadsorption and corticosteroid therapy. Despite ongoing treatment anti-ADAMTS13 antibodies still developed and ADAMTS13 activity remained less than 0.1U/ml. After 5 weeks of therapy, during which time the patient was seriously ill with striking neurological limitations, her platelet count dropped and a splenectomy was performed. The patient’s state improved despite a complicated postoperative phase. During the next 4 weeks, her platelet count increased gradually up to 780 G/L, a moderately low ADAMTS13 activity of 0.24U/ml (0.57ng/ml ADAMTS13 antigen) was detected and ADAMTS13-specific antibodies were not measurable. However, within a few days her platelet count dramatically dropped to 20G/L, anti-ADAMTS13 antibodies reappeared and ADAMTS13 activity again was undetectable. The patient’s state deteriorated and she died 2 days later from multiple organ failure. We show the results of the fluctuating anti-ADAMTS13 antibody profile (functional inhibitors and total IgG, IgG subtypes, IgA and IgM) and the pattern of the ADAMTS13 domain-specific reactivity superimposed with the common clinical laboratory data over the patient’s 9-week clinical course.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4661-4661
Author(s):  
Sarah Steinemann ◽  
Tanja Falter ◽  
Mirjeta Qorraj ◽  
Thomas Vigh ◽  
Inge Scharrer

Abstract Abstract 4661 Introduction: Thrombotic thrombocytopenic purpura (TTP) is characterized by thrombocytopenia, hemolytic anemia and microthrombi. A deficiency of the metalloprotease ADAMTS 13, which cleaves a Tys1605-Met1606 bond in the A2 subunit of von Willebrand factor (VWF), leads to formation of ultra large von Willebrand multimers (UL-VWF) and can cause platelet aggregation and mircovascular thrombosis. Treatment of choice is the substitution of plasma with plasmaexchange. There are two different plasma types available: Fresh Frozen Plasma (FFP) and solvent/detergent (s/d) treated plasma. This treatment may carry significant risks and side effects for the patients. Therefore we investigated the side effects of the therapy and furthermore the ADAMTS13 activity of the two plasma types. Methods: A questionnaire was send to 66 TTP patients of the Department of Hematology to evaluate different side effects of the therapy. 20 batches of FFP and 4 batches of s/d plasma of all blood groups were investigated on ADAMTS13 activity. The ADAMTS13 activity was detected with BCS-Method according to Böhm and two commercial FRET assays. Results: So far 34 patients were inquired about age, weight and suspected trigger situations that might have caused their TTP manifestation. The mean age of the patients was 34 years with a mean weight of 70kg. A previous infection caused TTP manifestation in 42% of the patients; drug therapy (22%) and pregnancy (17%) were other mentioned triggers. 94% of the patients suffered from an acquired TTP and only 6% had a hereditary TTP. The patients had 2.88 relapses and were treated with 16.27 plasmaexchanges. 56% had an additional therapy with Rituximab to achieve a faster remission of the disease. These patients needed less plasmaexchanges for recovery, which proofed to be significant at 2% level in a one sided t-test. Tingling (64.7%) and shivering (51%) were the most often mentioned side effects and simultaneously described as the strongest. Shivering was significantly correlated to tachycardia (p<0.01). Headaches were significantly correlated to hot flushes, tingling and collapse (p< 0.05). Side effects and allergic reactions occurred in the therapy with FFP as well as with s/d plasma. Another side effect was the complication that came along with infection of the venous access. Most patients had a central venous catheter (72%) and described infections and pruritus (60%), 50% of them mentioned this complication more than once. We found in usual FFP slightly higher ADAMTS13 activity levels (696.97 ng/ml) than in s/d virus inactivated plasma (643.86 ng/ml). The ADAMTS13 activity varied between the different assays (normal range: 666 ± 135ng/ml). Conclusion: Our investigation demonstrated that plasmaexchange therapy is still associated with a wide range of side effects. Side effects of plasmaexchange that were most frequently described by patients were tingling and shivering. Headaches also occurred in various cases. Patients suffered generally from more than one side effect at the same time during the treatment. Allergic reactions to the plasma therapy were mentioned by 65% of the patients. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 112 (08) ◽  
pp. 297-303 ◽  
Author(s):  
Ilaria Mancini ◽  
Carla Valsecchi ◽  
Luca Lotta ◽  
Louis Deforche ◽  
Silvia Pontiggia ◽  
...  

SummaryCollagen-binding activity (CBA) and FRETS-VWF73 assays are widely adopted methods for the measurement of the plasmatic activity of ADAMTS13, the von Willebrand factor (VWF) cleaving-protease. Accurately assessing the severe deficiency of ADAMTS13 is important in the management of thrombotic thrombocytopenic purpura (TTP). However, non-concordant results between the two assays have been reported in a small but relevant percentage of TTP cases. We investigated whether CBA or FRETS-VWF73 assay reflects ADAMTS13 proteolytic activity in acquired TTP patients with non-concordant measurements. Twenty plasma samples with non-concordant ADAMTS13 activity results, <10% using FRETS-VWF73 and ≥20% using CBA, and 11 samples with concordant results, <10% using either FRETS-VWF73 and CBA assays, were analysed. FRETS-VWF73 was performed in the presence of 1.5 M urea. ADAMTS13 activities were also measured under flow conditions and the VWF multimer pattern was defined in order to verify the presence of ultra-large VWF due to ADAMTS13 deficiency. In FRETS-VWF73 assay with 1.5 M urea, ADAMTS13 activity significantly increased in roughly 50% of the samples with non-concordant results, whereas it remained undetectable in all samples with concordant measurements. Under flow conditions, all tested samples showed reduced ADAMTS13 activity. Finally, samples with non-concordant results showed a ratio of high molecular weight VWF multimers higher than normal. Our results support the use of FRETS-VWF73 over CBA assay for the assessment of ADAMTS13 severe deficiency and indicate urea as one cause of the observed differences.


2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Cesar A. Perez ◽  
Nabil Abdo ◽  
Anuj Shrestha ◽  
Edgardo S. Santos

Thrombotic thrombocytopenic purpura (TTP) is an uncommon life-threatening disease characterized by microangiopathic hemolytic anemia and thrombocytopenia, commonly associated with infections, malignancy, drugs, and autoimmune diseases. We report a case of 19-year-old previously healthy female that presents with anemia and thrombocytopenia diagnosed with thrombotic thrombocytopenic purpura that was treated successfully with plasmapheresis and corticosteroids. Laboratory findings also revealed antinuclear antibodies and antibodies to double-stranded DNA. Two weeks after presentation developed inflammatory arthritis, fulfilling diagnostic criteria for systemic lupus erythematosus (SLE). Prompt diagnosis and treatment with plasma exchange and corticosteroids should be instituted as soon as the diagnosis of TTP is suspected, even if other diagnoses, including lupus, are possible. When present, the coexistence of these two etiologies can have a higher mortality than either disease alone. An underlying diagnosis of SLE should be considered in all patients presenting TTP and the study of this association may provide a better understanding of their immune-mediated pathophysiology.


Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 778-785 ◽  
Author(s):  
Giuseppe Remuzzi ◽  
Miriam Galbusera ◽  
Marina Noris ◽  
Maria Teresa Canciani ◽  
Erica Daina ◽  
...  

Abstract Whether measurement of ADAMTS13 activity may enable physicians to distinguish thrombotic thrombocytopenic purpura (TTP) from hemolytic uremic syndrome (HUS) is still a controversial issue. Our aim was to clarify whether patients with normal or deficient ADAMTS13 activity could be distinguished in terms of disease manifestations and multimeric patterns of plasma von Willebrand factor (VWF). ADAMTS13 activity, VWF antigen, and multimeric pattern were evaluated in patients with recurrent and familial TTP (n = 20) and HUS (n = 29). Results of the collagen-binding assay of ADAMTS13 activity were confirmed in selected samples by testing the capacity of plasma to cleave recombinant VWF A1-A2-A3. Most patients with TTP had complete or partial deficiency of ADAMTS13 activity during the acute phase, and in some the defect persisted at remission. However, complete ADAMTS13 deficiency was also found in 5 of 9 patients with HUS during the acute phase and in 5 patients during remission. HUS patients with ADAMTS13 deficiency could not be distinguished clinically from those with normal ADAMTS13. In a subgroup of patients with TTP or HUS, the ADAMTS13 defect was inherited, as documented by half-normal levels of ADAMTS13 in their asymptomatic parents, consistent with the heterozygous carrier state. In patients with TTP and HUS there was indirect evidence of increased VWF fragmentation, and this occurred also in patients with ADAMTS13 deficiency. In conclusion, deficient ADAMTS13 activity does not distinguish TTP from HUS, at least in the recurrent and familial forms, and it is not the only determinant of VWF abnormalities in these conditions.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 523-523
Author(s):  
Wenjing Cao ◽  
Alicia Veninga ◽  
Elizabeth M. Staley ◽  
Adam Miszta ◽  
Nicole Kocher ◽  
...  

Abstract Background: Immune thrombotic thrombocytopenic purpura (iTTP), a potentially fatal hematological emergency, is primarily caused by acquired deficiency of ADAMTS13 activity due to autoantibodies. Immunoglobulin G (IgG)-type autoantibodies bind ADAMTS13 and inhibit its ability to cleave endothelium-derived ultra large von Willebrand factor (ULVWF). However, it remains poorly understood whether plasma VWF status can be used as a disease marker for diagnosis and monitoring therapy in patients with acute iTTP. Objective: To address this question, we determined plasma levels of VWF antigen (VWF:Ag), collagen-binding activity (VWF:CB), active forms of VWF (VWF:Ac), and VWF multimers in iTTP patients during acute episode and in early remission. Patients and Methods: From the Alabama registry, we identified 69 unique patients with a confirmed diagnosis of iTTP in whom plasma ADAMTS13 activity was <10 U/dL with positive inhibitors and elevated anti-ADAMTS13 IgGs. Of 69 patients, 21 had longitudinal plasma samples collected. Plasma samples from 56 healthy individuals, who did not have a hematological disease, cancer, and infection, were recruited as controls. Plasma levels of VWF:Ag, VWF:CB, and VWF:Ac were determined by an ELISA-based assay. Plasma VWF multimer distribution was assessed by an in-gel Western blotting assay following electrophoresis on a 1% SDS-agarose gel. Results: The mean age for our cohort iTTP patients was 43.9 ± 13.4 years. Twenty-six patients were male and 43 were female with male to female ratio of 1 to 1.7. Fifty-three patients were African American descents, 14 Caucasians, 1 Hispanic, and 1 unknown race. Plasma levels of VWF:Ag in acute iTTP patients were 289.4 ± 17.7%, significantly increased compared with those in the healthy controls (144.9 ± 7.6%) (p<0.0001); plasma levels of VWF:CB in these patients were 241 ± 17.9%, also significantly elevated compared with those in the healthy controls (149.9 ± 12.01%) (p=0.0001); additionally, plasma levels of VWF:Ac (304.6 ± 23.2%), assessed by its ability to bind anti-VWF-A1 nanobody, were more dramatically elevated compared with those in the controls (101.6 ± 5.9%) (p<0.0001). More interestingly, while the ratios of VWF:CB to VWF:Ag in patients with acute iTTP (0.8 ± 0.04) were lower than those in the healthy controls (1.0 ± 0.05) (p=0.0036), the ratios of VWF:Ac to VWF:Ag were significantly higher in patients with acute episode (1.2 ± 0.1) than those in the controls (0.8 ± 0.05) (p=0.0003). Furthermore, there was no statistically significant difference in the patient plasma levels of VWF:Ag (p=0.69) and VWF:CB (p=0.08) during acute episode and during early remission. However, the plasma levels of VWF:Ac in patients with acute disease were significantly higher than those in the early remission (p=0.002). Surprisingly, 90% (36/40) of out iTTP patients during acute episode showed the presence of ULVWF in their plasma using in-gel Western blotting, which allows the ULVWF to be detected without the transfer step to avoid any potential loss of larger VWF multimers during protein transfer. These ULVWF multimers disappeared in 3/4 iTTP patients in remission when ADAMTS13 activity recovered. In 28 healthy control samples, only one showed ULVWF. Conclusion: Our results demonstrate, for the first time in a large cohort, that active forms of VWF and ultra large VWF multimers are present in iTTP patient's plasma during the acute period, which is reduced or disappears during the early remission. Therefore, measuring active forms of VWF and ultra large VWF multimers may aid in diagnosis of iTTP and help monitoring of disease processes following therapy. Our ongoing study is to determine whether these biomarkers can be used to predict responses to treatment and long-term outcome. Disclosures Zheng: Alexion: Research Funding, Speakers Bureau.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2293-2293
Author(s):  
Charles L. Bennett ◽  
Anaadriana Zakarija ◽  
Hau C. Kwaan ◽  
Dilip Pandey ◽  
Paul Yarnold ◽  
...  

Abstract Background : Many idiopathic thrombotic thrombocytopenia purpura (TTP) patients have severe deficiency of ADAMTS13, an enzyme that cleaves ultralarge von Willebrand multimers. We recently reported that thienopyridine-associated TTP is characterized by an immunologic pathway with severe ADAMTS13 deficiency and a non-immunologic pathway with higher ADAMTS13 activity levels. We now compare findings for idiopathic and thienopyridine-associated TTP patients. Methods : Clinical findings and laboratory findings were evaluated for 51 idiopathic and 39 thienopyridine-associated TTP. Results: Clinical findings were similar between idiopathic and thienopyridine-associated TTP for both severe ADAMTS13 deficient and non-deficient patients. Differences were noted in gender and age, relapse rates, and survival. Conclusion : Among TTP patients with ADAMTS13 deficiency, relapses are frequent in idiopathic TTP patients and Rituximab may be useful, while for thienopyridine-associated TTP patients spontaneous relapse are rare as long as no re-exposure occurs. Among ADAMTS13 non-deficient patients, survival is high following therapeutic plasma exchange (TPE) for idiopathic patients but not for thienopyridine-associated TTP patients. Despite similarities, idiopathic and thienopyridine associated TTP probably have different initiating factors. ADAMTS13 activity and clinical characteristics in idiopathic and thienopyridine-associated TTP Idiopathic severe ADAMTS13 deficiency (n=29) †Thienopyridine severe ADAMTS13 deficiency (n=26) Idiopathic non-severe ADAMTS13 deficiency (n=22) †Thienopyridine non-severe ADAMTS13 deficiency (n=13) *p&lt;0.05 for comparison of severe ADAMTS13 deficiency versus non-severe ADAMTS13 deficiency. †Thienopyridine-associated TTP clinical and presenting neutralizing autoantibody data was summarized from the Journal of the American College of Cardiology publication by Bennett et al. in 2007. ‡Thienopyridine-associated TTP remission autoantibody data was summarized Tsai et al, 2002, Bennett et al, 2000, and Orimo et al, 2002, and included 3 patients. §Data from average of ADAMTS13 deficient and non-deficient cohorts. Mean Age 41 67 47 60 Sex (% female) 79% 54% 86% 39% Platelet count/mm3 (mean)* 18,978 9,269 51,409 35,000 Platelet count &lt;20,000/mm3* 69% 96% 23% 38% Hemoglobin (mg/dl; mean) 8.5 8.3 9.0 8.4 Creatinine (mg/dl; mean)* 1.5 2.2 3.2 3.0 Creatinine &gt;2.5 mg/dl* 11% 27% 48% 46% 30-day survival 96% 85% 90% 62% Long-term relapse* 42% 8% 0% 0% Neutralizing autoantibodies to ADAMTS13 (prior to TPE) § 79% 100% 27% 0% Neutralizing autoantibodies to ADAMTS 13 (measured at remission) § 55% 33%‡ 33% 0%


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2286-2286
Author(s):  
Yusuke Yamaguchi ◽  
Takanori Moriki ◽  
Hideo Wada ◽  
Masanori Matsumoto ◽  
Yoshihiro Fujimura ◽  
...  

Abstract Anti-ADAMTS13 autoantibodies are considered to play pivotal roles in the pathophysiology of acquired thrombotic thrombocytopenic purpura (TTP). They inhibit the ADAMTS13 function resulting in the appearance of ultra-large von Willebrand factor (VWF) multimers. Major binding sites of the autoantibodies were reported to be in the cysteine-rich/spacer domains. To clarify the precise peptide sequences recognized by anti-ADAMTS13 IgG autoantibodies, we constructed a random cDNA fragment library expressing various peptides of ADAMTS13 on the surface of lambda phage and screened the library using purified IgG from 13 TTP patients. Diverse peptide sequences were obtained from almost entire ADAMTS13 domains such as metalloprotease, disintegrin, TSP1-1, cysteine-rich, spacer, TSP1- 2, 3, 4, 5, 7, 8 and CUB1. In particular, we detected an identical 26 amino-acid epitope sequence in the C-terminus of spacer domain from Gly662 to Val687 (sp662–687) shared by 5 TTP patients. Moreover, the peptide sequence was exactly included in one of the VWF binding epitope sites that we previously determined (Blood110 (11), 795a, 2007). We then assessed the impact of specific autoantibody to ADAMTS13 activity measured by FRETS-VWF73 or EIA and ADAMTS13 inhibitor titer in each of TTP patient plasma. However, both of the ADAMTS13 activity and inhibitor titer seemed not correlated with the existence of specific sp662–687 IgG autoantibody. These observations suggest that the autoantibody to sp662–687 may be one specific feature of TTP, although other epitopes are also involved in the pathogenesis of the disorder.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2839-2846 ◽  
Author(s):  
Miha Furlan ◽  
Rodolfo Robles ◽  
Max Solenthaler ◽  
Bernhard Lämmle

Plasma of patients with thrombotic thrombocytopenic purpura (TTP) has been shown to contain unusually large von Willebrand factor (vWF) multimers that may cause platelet agglutination in vivo. Fresh frozen plasma infusions and plasma exchange represent the most efficient therapy of acute TTP. A specific protease responsible for cleavage of vWF multimers has been recently isolated from normal human plasma and was found to be deficient in four patients with chronic relapsing TTP. We examined the activity of the vWF-cleaving protease in plasma samples collected over a period of 400 days from a further patient with recurrent episodes of TTP who was treated by plasma exchange, plasma infusion, vincristine, corticosteroid therapy, and splenectomy. Complete deficiency of the vWF-cleaving protease was established during the first episode of TTP. The ensuing normalization of the platelet count was associated with the appearance of the protease activity. Three months after remission from the initial TTP event, the vWF-cleaving protease again disappeared and the platelet count gradually decreased. Relapses of severe thrombocytopenia occurred 7 and 11 months after the first acute episode of TTP. Deficient protease activity was associated with the presence in the patient plasma of an inhibitor that was found to be an IgG. Plasma exchange/infusion was followed by a temporary increase in the antibody titer, whereas treatment with vincristine led to a recovery of the platelet count without affecting the inhibitor concentration. Splenectomy and corticosteroid treatment resulted in disappearance of the autoantibody and normalization of the protease activity and of the platelet count. Our data suggest that the thrombocytopenia in this patient with TTP was associated with a lack of the vWF-cleaving protease activity depleted by an autoimmune mechanism. This case, together with our previously reported patients, leads us to conclude that acquired as well as constitutional deficiency of the vWF-cleaving protease may predispose to TTP.


Sign in / Sign up

Export Citation Format

Share Document