scholarly journals The role of companion animals in the environmental circulation of tick-borne bacterial pathogens

2018 ◽  
Vol 25 (3) ◽  
pp. 473-480 ◽  
Author(s):  
Bogumiła Skotarczak
Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Alicja Buczek ◽  
Weronika Buczek

Increased human mobility elevates the risk of exposure of companion animals travelling with their owners or imported from other regions to tick attacks. In this study, we highlight the potential role of dogs and cats taken for tourist trips or imported animals in the spread of ticks and tick-borne pathogens. The Rhipicephalus sanguineus tick, which is a vector of numerous pathogens causing diseases in animals and humans, is imported most frequently from endemic areas to many European countries. Additionally, alien tick species with high epizootic and epidemiological importance can be imported on dogs from other continents. Companion animals play an even greater role in the spread of autochthonous tick species and transmission of tick pathogens to other animals and humans. Although the veterinary and medical effects of the parasitism of ticks carried by companion animals travelling with owners or imported animals are poorly assessed, these animals seem to play a role in the rapid spread of tick-borne diseases. Development of strategies for protection of the health of companion animals in different geographic regions should take into account the potential emergence of unknown animal tick-borne diseases that can be transmitted by imported ticks.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kayhan Ilbeigi ◽  
Mahdi Askari Badouei ◽  
Hossein Vaezi ◽  
Hassan Zaheri ◽  
Sina Aghasharif ◽  
...  

Abstract Objectives The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is one of the major public health concerns as colistin is the last-resort antibiotic for treating infections caused by multidrug-resistant Gram-negative bacteria. We aimed to determine the prevalence of the prototype widespread colistin resistance genes (mcr-1 and mcr-2) among commensal and pathogenic Escherichia coli strains isolated from food-producing and companion animals in Iran. Results A total of 607 E. coli isolates which were previously collected from different animal sources between 2008 and 2016 used to uncover the possible presence of plasmid-mediated colistin resistance genes (mcr-1 and mcr-2) by PCR. Overall, our results could not confirm the presence of any mcr-1 or mcr-2 positive E. coli among the studied isolates. It is concluded that despite the important role of food-producing animals in transferring the antibiotic resistance, they were not the main source for carriage of mcr-1 and mcr-2 in Iran until 2016. This study suggests that the other mcr variants (mcr-3 to mcr-9) might be responsible for conferring colistin resistance in animal isolates in Iran. The possible linkage between pig farming industry and high level of mcr carriage in some countries needs to be clarified in future prospective studies.


2007 ◽  
Vol 35 (2) ◽  
pp. 490-496 ◽  
Author(s):  
Ali A. El Solh ◽  
Goda Choi ◽  
Marcus J. Schultz ◽  
Lilibeth A. Pineda ◽  
Corey Mankowski

Author(s):  
Joni Renee White ◽  
Priscila Dauros-Singorenko ◽  
Jiwon Hong ◽  
Frédérique Vanholsbeeck ◽  
Anthony Phillips ◽  
...  

Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.


Author(s):  
Y. D. Niu ◽  
K. Stanford ◽  
T. A. McAllister ◽  
T. R. Callaway
Keyword(s):  

Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 480 ◽  
Author(s):  
Marta Hernández ◽  
David Abad ◽  
José María Eiros ◽  
David Rodríguez-Lázaro

Little information on the SARS-CoV-2 virus in animals is available to date. Whereas no one husbandry animal case has been reported to date, which would have significant implications in food safety, companion animals play a role in COVID-19 epidemiology that opens up new questions. There is evidence that SARS-CoV-2 can infect felines, dogs and minks, and there is evidence of human-to-animal infection. Likewise, the S protein nucleotide sequence of the SARS-CoV-2 virus isolated in domestic animals and humans is identical, and the replication of the SARS-CoV-2 in cats is efficient. Besides, the epidemiological evidence for this current pandemic indicates that the spillover to humans was associated with close contact between man and exotic animals, very probably in Chinese wet markets, thus there is a growing general consensus that the exotic animal markets, should be strictly regulated. The examination of these findings and the particular role of animals in COVID-19 should be carefully analyzed in order to establish preparation and containment measures. Animal management and epidemiological surveillance must be also considered for COVID-19 control, and it can open up new questions regarding COVID-19 epidemiology and the role that animals play in it.


2019 ◽  
Vol 59 (3) ◽  
pp. 261-265 ◽  
Author(s):  
Yogesh S. Nimonkar ◽  
Bhoomika Yadav ◽  
Payal Talreja ◽  
Ashutosh Sharma ◽  
Shalaka Patil ◽  
...  

2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Tessa E. LeCuyer ◽  
Barbara A. Byrne ◽  
Joshua B. Daniels ◽  
Dubraska V. Diaz-Campos ◽  
G. Kenitra Hammac ◽  
...  

ABSTRACTEscherichia coliis the most common cause of human and canine urinary tract infection (UTI). Clonal groups, often with high levels of antimicrobial resistance, are a major component of theE. colipopulation that causes human UTI. While little is known about the population structure ofE. colithat causes UTI in dogs, there is evidence that dogs and humans can share fecal strains ofE. coliand that human-associated strains can cause disease in dogs. In order to better characterize theE. colistrains that cause canine UTI, we analyzed 295E. coliisolates obtained from canine urine samples from five veterinary diagnostic laboratories and analyzed their multilocus sequence types, phenotypic and genotypic antimicrobial resistance profiles, and virulence-associated gene repertoires. Sequence type 372 (ST372), an infrequent human pathogen, was the predominant sequence type in dogs at all locations. Extended-spectrum β-lactamase-producing isolates withblaCTX-Mgenes were uncommon in canine isolates but when present were often associated with sequence types that have been described in human infections. This provides support for occasional cross-host-species sharing of strains that cause extraintestinal disease and highlights the importance of understanding the role of companion animals in the overall transmission patterns of extraintestinal pathogenicE. coli.


Toxins ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 719 ◽  
Author(s):  
Joachim Frey

Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in the structural toxin (RTX) toxins is particularly abundant among bacterial pathogens of animals. Many of these toxins are described as hemolysins due to their capacity to lyse erythrocytes in vitro. Hemolysis by RTX toxins is due to the formation of cation-selective pores in the cell membrane and serves as an important marker for virulence in bacterial diagnostics. However, their physiologic relevant targets are leukocytes expressing β2 integrins, which act as specific receptors for RTX toxins. For various RTX toxins, the binding to the CD18 moiety of β2 integrins has been shown to be host specific, reflecting the molecular basis of the host range of RTX toxins expressed by bacterial pathogens. Due to the key role of RTX toxins in the pathogenesis of many bacteria, antibodies directed against specific RTX toxins protect against disease, hence, making RTX toxins valuable targets in vaccine research and development. Due to their specificity, several structural genes encoding for RTX toxins have proven to be essential in modern diagnostic applications in veterinary medicine.


Sign in / Sign up

Export Citation Format

Share Document