Vaccine for SARS-CoV-2- The Facts That We Know So Far

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1500-1506
Author(s):  
Anjali Vashisth ◽  
Gargi Nimbulkar ◽  
Kumar Gaurav Chhabra ◽  
Amit Reche ◽  
Shivani Lanjewar

The whole world is under the grip of a pandemic of COVID-19, a disease caused by a newly discovered strain of coronavirus and the name given is SARS-CoV-2. The term 'novel' is used for this virus because researches suggest that its origin is from an animal which was transmitted to a human and now is capable of having transmission from human to human. Symptoms of COVID-19 can be mild to severe. Mortality is high in severe cases. Also, this virus is a serious threat to the elderly and people with other systemic illness. There is no specific protocol provided for its treatment and the treatment primarily focuses on symptomatic relief. Human immune systems have never come across this particular type of strain of virus before. As a result, human body has not developed immunity for it moreover no effective vaccine is developed for it at this point of time. But there is an active strenuous work going on to understand more and more about the interaction of host-pathogen, how does host immunity responses to this virus moreover how this pathogen is able to invade the immune system which can be utilised for the development of a vaccine. As the disease is highly infectious, there is an urgent need for the development of a vaccine. Hence this review aims to summarize the undergoing scientific work and research in progress for the development of vaccine and all the advancement that has come in focus for its development.

2021 ◽  
Vol 9 ◽  
Author(s):  
Brigette Boast ◽  
Cristiane de Jesus Nunes-Santos ◽  
Hye Sun Kuehn ◽  
Sergio D. Rosenzweig

The normal expression of Ikaros (IKZF1) is important for the proper functioning of both the human and murine immune systems. Whilst our understanding of IKZF1 in the immune system has been greatly enhanced by the study of mice carrying mutations in Ikzf1, analyses of human patients carrying germline IKZF1 mutations have been instrumental in understanding its biological role within the human immune system and its effect on human disease. A myriad of different mutations in IKZF1 have been identified, spanning across the entire gene causing differential clinical outcomes in patients including immunodeficiency, immune dysregulation, and cancer. The majority of mutations in humans leading to IKAROS-associated diseases are single amino acid heterozygous substitutions that affect the overall function of the protein. The majority of mutations studied in mice however, affect the expression of the protein rather than its function. Murine studies would suggest that the complete absence of IKZF1 expression leads to severe and sometimes catastrophic outcomes, yet these extreme phenotypes are not commonly observed in patients carrying IKZF1 heterozygous mutations. It is unknown whether this discrepancy is simply due to differences in zygosity, the role and regulation of IKZF1 in the murine and human immune systems, or simply due to a lack of similar controls across both groups. This review will focus its analysis on the current literature surrounding what is known about germline IKZF1 defects in both the human and the murine immune systems, and whether existing mice models are indeed accurate tools to study the effects of IKZF1-associated diseases.


2021 ◽  
Author(s):  
Yang Hu ◽  
Yudai Xu ◽  
Lipeng Mao ◽  
Wen Lei ◽  
Jan Jian Xiang ◽  
...  

Abstract Background: Human immune system functions over an entire lifetime, yet how and why the immune system becomes less effective with age are not well understood. Therefore, the aim of this study is to exploit a large-scale population-based strategy to systematically identify genes and pathways differentially expressed as a function of chronological age. Despite the importance of age and race in shaping immune cell numbers and functions, it is unclear whether Asian and Caucasian immune systems go through similar gene expression changes throughout their lifespan, and to what extent these aging-associated variations are shared among ethnicities. Results: Here, we characterize peripheral blood mononuclear cells transcriptome from 19 healthy adults of RNA-seq data and 153 healthy subjects of micoarray data with 21~90 years of age using the weighted gene correlation network analyses (WGCNA). These data reveal a set of insightful gene expression modules and representative gene biomarkers for human immune system aging from Asian and Caucasian ancestry, respectively. Among them, the aging-specific modules may show an age-related gene expression variation spike around early-seventies. In addition, we find the top hub genes including NUDT7, CLPB, OXNAD1 and MLLT3 are shared between Asian and Caucasian aging related modules and further validated in human PBMCs from different age groups. Conclusion: Overall, our findings reveal how age and race differentially affect the immune systems between Asian and Caucasian, as well as discovered a common genetic variant that greatly impacts normal PBMC aging between Asian and Caucasian.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Juan-Carlos Biancotti ◽  
Terrence Town

Hematopoietic stem cells (HSCs) are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCsex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCsin vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.


2019 ◽  
Vol 25 (39) ◽  
pp. 4154-4162 ◽  
Author(s):  
Jacek M. Witkowski ◽  
Ewa Bryl ◽  
Tamas Fulop

With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.


2009 ◽  
Vol 206 (10) ◽  
pp. 2059-2066 ◽  
Author(s):  
Rick M. Maizels ◽  
Edward J. Pearce ◽  
David Artis ◽  
Maria Yazdanbakhsh ◽  
Thomas A. Wynn

Helminths are multicellular eukaryotic parasites that infect over one quarter of the world’s population. Through coevolution with the human immune system, these organisms have learned to exploit immunoregulatory pathways, resulting in asymptomatic tolerance of infections in many individuals. When infections and the resulting immune responses become dysregulated, however, acute and chronic pathologies often develop. A recent international meeting focused on how these parasites modulate host immunity and how control of parasitic and immunopathological disease might be achieved.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2781-2781 ◽  
Author(s):  
Fumihiko Ishikawa ◽  
Masaki Yasukawa ◽  
Bonnie Lyons ◽  
Shuro Yoshida ◽  
Leonard D. Shultz ◽  
...  

Abstract (Purpose) We aimed to develop a new model for studying the development of a human hematopoietic and immune systems in vivo. (Methods) In order to establish a new model of xenogeneic transplantation, we establish an immune-compromised strain, NOD.Cg-PrkdcscidIL2rgtmlWjl/Sz (NOD/SCID/IL2rg-null) mice by backcrossing a complete null mutation of the IL2 receptor common gamma chain (IL2rg) onto the NOD/SCID background. 1 x 105 human CB-derived lineage antigen negative (Lin−) CD34+ cells were intravenously transplanted into newborn NOD/SCID/IL2rg-null mice following 100cGy irradiation. At 3 months post-transplantation, the engraftment of human cells was evaluated by flow cytometric analysis, immunostaining, and functional assays for production of human immunoglobulin and T-cell cytotoxicity against allogeneic cells. (Results) NOD/SCID/IL2rg-null mice showed extremely low activity of NK cells along with the complete lack of mature B cells and T cells. During post-natal development of the NOD/SCID/IL2rg-null mice, a human hematopoietic system was developed following injection of human CB-derived Lin-CD34+ cells. In BM of the recipient mice, human glycophorin A+ erythroid cells were present at 9.5 +/− 6.2% (n=5), and human CD41+ megakaryocytes were present at 1.64 +/− 0.42% (n=5). Human CB-derived Lin−CD34+ cells generated multi-lineage leukocytes, CD33+ myeloid cells, CD19+ B cells, and CD3+ T cells. The engraftment level of human CD45+ cells in peripheral blood was significantly higher (68.9 +/− 11.6%, n=5) in NOD/SCID/IL2rg-null mice than that in NOD/SCID/b2mnull mice (12.4 +/− 5.9%, n=4). Mature erythrocytes and platelets were identified in peripheral blood. The xenogeneic environment supported the systemic development of a human immune system, containing each stage of B cells and T cells in primary and secondary lymphoid tissues. CD34+CD19+ pro-B cells, CD10+CD19+ B cells, and CD19+CD20hi mature B cells were identified in the BM and spleen. Immature CD4+CD8+ double positive T cells were the major cell populations in the thymus, while spleen contained abundant single positive T cells at 1.39 +/− 0.61 (n=5) CD4/CD8 ratio, suggesting that human CB stem/progenitor-derived T cells underwent the maturation and proliferation similarly as identified in human body. Transplanted human stem cells reconstituted mucosal immunity in intestinal tracts as evidenced by human IgA+ B cells and CD3+ T cells. Adaptive human immune system cooperatively functioned in xenogeneic environment to produce antigen-specific human IgM and IgG antibodies, when engrafted mice were immunized with ovalbumin. Furthermore, human CD4+ T cells as well as CD8+ T cells generated in the xenogeneic host exerted cytotoxicity against allogeneic target cells. (Conclusion) The neonatal NOD/SCID/IL2rg-null model will facilitate studying post-natal development of the human hematopoietic and immune systems and for studying of human immune surveillance in vivo against exogenous antigens.


2019 ◽  
Vol 26 (6) ◽  
pp. 1027-1044 ◽  
Author(s):  
Giulia Freer ◽  
Fabrizio Maggi ◽  
Mauro Pistello

Background:The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens.Objective:This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence.Method:We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome.Results:A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism.Conclusion:The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.


2020 ◽  
Vol 63 (3) ◽  
pp. 7-18
Author(s):  
Marcela Solís-Rodríguez ◽  
Ángel G. Alpuche-Solís ◽  
Rocío G. Tirado-Mendoza

In 2001 in the Netherlands, Human metapneumovirus (hMPV) was identified as a “new” etiologic agent causing acute respiratory infections in children younger than 5 years old; however, it has also been isolated in the elderly and immunocompromised people. This virus is considered the second etiological agent in acute diseases of the respiratory tract. Currently, the estimated cost of IRAs in our country is of 9,000USD per inpatient. hMPV is a member of the genus Metapneumovirus, family Pneumoviridae, and it belongs to the order Mononegavirales that is part of the negative single-stranded ribonucleic acid (RNA) virus, consisting of eight genes ordered: 3’-N-P-M-FM2-SH-G-L-5 ‘, and which encodes for 9 proteins. Of these proteins, the F fusion glycoprotein is highly conserved in the genus Metapneumovirus, and is the major antigenic determinant, and because an approved vaccine doesn’t exist, it has been used as a candidate epitope for the design of a vaccine that confers host immunity or as a therapeutic target in the creation of antiviral peptides that inhibit the fusion of the virus to its target cell and to avoid infection in subjects at high risk of contagion since there is currently none accepted by COFEPRIS as a prophylactic treatment against hMPV. Key words: hMPV; respiratory infections; epitopes; protein F;vaccines.


2020 ◽  
Vol 22 (1) ◽  
pp. 315
Author(s):  
Jana Brejchova ◽  
Vladimir Holan ◽  
Petr Svoboda

The observation of the immunomodulatory effects of opioid drugs opened the discussion about possible mechanisms of action and led researchers to consider the presence of opioid receptors (OR) in cells of the immune system. To date, numerous studies analyzing the expression of OR subtypes in animal and human immune cells have been performed. Some of them confirmed the expression of OR at both the mRNA and protein level, while others did not detect the receptor mRNA either. Although this topic remains controversial, further studies are constantly being published. The most recent articles suggested that the expression level of OR in human peripheral blood lymphocytes could help to evaluate the success of methadone maintenance therapy in former opioid addicts, or could serve as a biomarker for chronic pain diagnosis. However, the applicability of these findings to clinical practice needs to be verified by further investigations.


Sign in / Sign up

Export Citation Format

Share Document