scholarly journals GEOCHEMICAL CHARACTERISTICS OF GOLD-BEARING GRANITOIDS AT AYANFURI IN THE KUMASI BASIN, SOUTHWESTERN GHANA: IMPLICATIONS FOR THE OROGENIC RELATED GOLD SYSTEMS

2020 ◽  
Vol 4 (2) ◽  
pp. 127-134
Author(s):  
Theophilus K. Agbenyezi ◽  
Gordon Foli ◽  
Simon K. Y. Gawu

This study investigates auriferous granitoids from the Esuajah and Fobinso pits within the Ayanfuri environment in the Paleoproterozoic Kumasi basin. The aim is to establish the geochemical characteristics of the granitoid gold ores and the possible deposit type which may influence mineral project development. 13 major and 51 trace elements were analyzed using XRF and ICP-MS devices, respectively. The granitoids are mainly classified as granodiorite that crystallized from a calc-alkaline magma series. The Fobinso granodiorite derived from the partial melting of the Birimian metasedimentary rocks, while the Esuajah granitoid derived from igneous rock melts. The granitoid are linked to magma source depleted in mantle material that contains crustal components through subduction processes. Major oxides of the granitoid vary lowly from the average background values derived for basin type granitoid in such terrains. Generally, the granitoid are enriched in Large Ion Lithophile Elements (LILE), while High Field Strength Elements (HFSE) and base metals are within background values when compared to Primitive Mantle (PM) values. Gold mineralisation is associated with Ag, As, Bi, Sb, Te, Pb and S in the peraluminous granitoids. Geochemical characteristics and field observations identify the deposit style as an orogenic related gold deposit type.

2022 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Qian Liu ◽  
Limei Tang ◽  
Ling Chen ◽  
Peng Gao

Seamounts are features generated by hot spots and associated intraplate volcanic activity. The geochemical characteristics of igneous rocks constituting seamounts provide evidence of important details of dynamic processes in the Earth, such as mantle magma source areas, and are key to understanding how mantle plume processes control the formation and evolution of seamounts and their resulting geochemical characteristics. The Pacific Ocean contains a large number of hitherto unstudied seamounts, whose ages and geochemical characteristics remain poorly known. This study presents the geochemical characteristics of six basalt samples from five seamounts in the Western Pacific and the 40Ar/9Ar ages of three samples are determined. The new analysis yielded 40Ar/39Ar ages for seamounts samples MP3D21, MP5D11, and MP5D15A of 95.43 ± 0.33, 62.4 ± 0.26, and 99.03 ± 0.4 Ma, respectively. The geochemical profiles of seamounts samples MP3D04, MP3D21, MP5D11, MP5D15A, MPID201, and MPID202 are consistent with alkaline basalts, as evidence by alkali-rich, silicon-poor compositions along with high titanium concentrations. The primitive mantle normalized rare-earth elements and trace elements spider pattern are similar to those of ocean island basalts. The Ta/Hf and Nb/Zr ratios and La/Zr-Nb/Zr discriminant diagrams indicate that the six seamounts formed from magma that originated in the deep mantle.


2016 ◽  
Vol 43 (1) ◽  
pp. 137 ◽  
Author(s):  
Juan A. Dahlquist ◽  
Sebastián O. Verdecchia ◽  
Edgardo G. Baldo ◽  
Miguel A.S. Basei ◽  
Pablo H. Alasino ◽  
...  

An Early Cambrian pluton, known as the Guasayán pluton, has been identified in the central area of Sierra de Guasayán, northwestern Argentina. A U-Pb zircon Concordia age of 533±4 Ma was obtained by LA-MC-ICP-MS and represents the first report of robustly dated Early Cambrian magmatism for the northwestern Sierras Pampeanas. The pluton was emplaced in low-grade metasedimentary rocks and its magmatic assemblage consists of K-feldspar (phenocrysts)+plagioclase+quartz+biotite, with zircon, apatite, ilmenite, magnetite and monazite as accessory minerals. Geochemically, the granitic rock is a metaluminous subalkaline felsic granodiorite with SiO2=69.24%, Na2O+K2O=7.08%, CaO=2.45%, Na2O/ K2O=0.71 and FeO/MgO=3.58%. Rare earth element patterns show moderate slope (LaN/YbN=8.05) with a slightly negative Eu anomalies (Eu/Eu*=0.76). We report the first in situ Hf isotopes data (εHft=-0.12 to -4.76) from crystallized zircons in the Early Cambrian granites of the Sierras Pampeanas, helping to constrain the magma source and enabling comparison with other Pampean granites. The Guasayán pluton might provide a link between Early Cambrian magmatism of the central Sierras Pampeanas and that of the Eastern Cordillera, contributing to define the western boundary of the Pampean paleo-arc.


Author(s):  
Mikael Vasilopoulos ◽  
Ferenc Molnár ◽  
Hugh O’Brien ◽  
Yann Lahaye ◽  
Marie Lefèbvre ◽  
...  

AbstractThe Juomasuo Au–Co deposit, currently classified as an orogenic gold deposit with atypical metal association, is located in the Paleoproterozoic Kuusamo belt in northeastern Finland. The volcano-sedimentary sequence that hosts the deposit was intensely altered, deformed, and metamorphosed to greenschist facies during the 1.93–1.76 Ga Svecofennian orogeny. In this study, we investigate the temporal relationship between Co and Au deposition and the relationship of metal enrichment with protolith composition and alteration mineralogy by utilizing lithogeochemical data and petrographic observations. We also investigate the nature of fluids involved in deposit formation based on sulfide trace element and sulfur isotope LA-ICP-MS data together with tourmaline mineral chemistry and boron isotopes. Classification of original protoliths was made on the basis of geochemically immobile elements; recognized lithologies are metasedimentary rocks, mafic, intermediate-composition, and felsic metavolcanic rocks, and an ultramafic sill. The composition of the host rocks does not control the type or intensity of mineralization. Sulfur isotope values (δ34S − 2.6 to + 7.1‰) and trace element data obtained for pyrite, chalcopyrite, and pyrrhotite indicate that the two geochemically distinct Au–Co and Co ore types formed from fluids of different compositions and origins. A reduced, metamorphic fluid was responsible for deposition of the pyrrhotite-dominant, Co-rich ore, whereas a relatively oxidized fluid deposited the pyrite-dominant Au–Co ore. The main alteration and mineralization stages at Juomasuo are as follows: (1) widespread albitization that predates both types of mineralization; (2) stage 1, Co-rich mineralization associated with chlorite (± biotite ± amphibole) alteration; (3) stage 2, Au–Co mineralization related to sericitization. Crystal-chemical compositions for tourmaline suggest the involvement of evaporite-related fluids in formation of the deposit; boron isotope data also allow for this conclusion. Results of our research indicate that the metal association in the Juomasuo Au–Co deposit was formed by spatially coincident and multiple hydrothermal processes.


2021 ◽  
Vol 48 (1) ◽  
pp. 1
Author(s):  
José Cabello

A review of gold and gold bearing base metals deposits in Chile, indicate the existence of at least six different type of ore deposits, most largely formed during the Cenozoic with predominance in the Miocene. Mesozoic deposits are common but less relevant regarding their size and gold content. These hydrothermal ore deposits are genetically associated with subduction related Andean arc magmatism. Due to its relationship with episodic magmatism migrating eastward, there is a tendency for the deposits to be in distinct, north-south trending, belts with a progressive west to east decrease in mineralization age. After analysing 82 cases in total, main gold concentration can be assigned to high-sulfidation epithermal and porphyry type deposits. Low-sulfidation epithermal, IOCG and mesothermal type appears as less relevant. Gold bearing copper deposits constitute an important part of Chile’s total gold production. Both IOCG type but especially porphyry copper deposits are and will remain as a substantial source to supplement the future output of the gold in the country. The 82 deposits with their tonnage and grade studied, represent a total gold content of 11,662 t equivalent to 375 Moz, excluding past production for those exploited. A number of probable gold bearing base metals high tonnage deposits (IOCG and porphyry copper) do not include their gold content in public format, hence the number delivered could be estimated conservative. Methodical geochronological, ore types and zonation studies are required to better appreciate this metallogenic setting widening current understanding and future exploration results.


2020 ◽  
Author(s):  
Nicholas Leventis ◽  
Thomas Zack ◽  
Iain Pitcairn ◽  
Johan Högmalm

<p>The Pontiac subprovince consists of metaturbidites, plutons and thin ultramafic rock layers of Archean age and lies south of the Cadillac-Larder Lake (C-LL) fault zone which is the boundary between the Pontiac and the extensively mineralized Abitibi Greenstone Belt. The sediments show a Barrovian metamorphic gradient which increases southwards, away from the C-LL fault. The most likely tectonic provenance for the Pontiac sedimentary rocks is that they represent a relic accretionary prism with material derived from both the Abitibi and an older terrane. Zircon U-Pb dating shows that deposition occurred not later than 2685±3 Ma ago and recent, robust Lu-Hf dating of garnets bracketed Pontiac's peak metamorphic conditions at 2658±4 Ma. For this study we used a recently developed LA-ICP-MS/MS method for in-situ Rb-Sr dating of biotite and plagioclase in samples ranging in metamorphic grade (biotite to sillimanite zones) from the Pontiac subprovince. Calibration of the instrument was achieved by repeated ablations on several reference materials (see Hogmalm et al. 2017) which also provided the monitoring of accuracy and precision throughout the analyses. Results show a range in dates between 2550 Ma and 2200 Ma with an average of 2440±50 Ma (2σ). Samples from the staurolite and kyanite zones have a larger range with respect to the other zones, but no significant differences are observed in the data with any method of data handing. These dates are ≈300Ma younger than the peak metamorphism in the area and this is attributed to either overgrowth and re-setting of the Rb-Sr system by a second metamorphic/hydrothermal event, or diffusional resetting with core-rim age variations. Possible influence from the adjacent late syntectonic to post-tectonic monzodiorite-monzonite-granodiorite-syenite (MMGS) plutons dated 2671±4 Ma and the garnet-muscovite-granite series (GMG) dated ≈2650 Ma cannot be ruled out. This study provides insights about the metamorphic history of the sequence and supports previous findings regarding resetting of some isotopic systems with relatively low closure temperatures (≈350-400°C) by later thermal events.</p>


2015 ◽  
Vol 12 (6) ◽  
pp. 551-562 ◽  
Author(s):  
Yue Yuan ◽  
Yanheng Li ◽  
Jingsen Fan

In this paper, the geochemical characteristics of the trace elements of the No. 6 coal seam from Tanggongta mine, Jungar Coalfield, were studied using the methods of an energydispersive X-ray spectrometer (SEM-EDX) analysis, X-ray powder diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometric (XRF) techniques. The content of sulfur ranges from 0.09% to 2.83% (1.09% on average). The ash is from 11.70% to 31.47% (20.72% on average), and the moisture is from 2.72% to 6.82% (4.72% on average). The main minerals are kaolinite, carbonate minerals and pyrite. Compared with the average values of Chinese coal, the contents of Ga, Cd, Tl, Li, Sr, and Ag are high. Compared with the values of world coal, Li and Sr are found at high levels. The distribution mode of the REE shows that LREE is concentrated, but HREE is relatively low. The Yinshan Oldland should be the most likely source of the coal’s Li. The bauxite of the Benxi formation could be another source of the coal’s Li in the NE Jungar Coalfield.


1993 ◽  
Vol 30 (6) ◽  
pp. 1123-1140 ◽  
Author(s):  
P. C. Lightfoot ◽  
H. de Souza ◽  
W. Doherty

Major and trace element data are presented for 2.2 Ga Proterozoic diabase sills from across the Nipissing magmatic province of Ontario. In situ differentiation of the magma coupled with assimilation of Huronian Supergroup roof sediments is responsible for the variation in composition between quartz diabase and granophyric diabase seen within many of the differentiated intrusions. Uniform trace element and isotope ratio signatures, such as La/Sm (2.8 – 3.7) and εNdCHUR (−2.7 to −5.9) characterize chilled margins and undifferentiated quartz diabases. These chemical signatures suggest the existence of a single magma source that was parental to intrusions throughout the magmatic province; this magma has higher La/Sm and lower Ti/Y than primitive mantle and is displaced towards the composition of shales. Most chilled diabases and quartz diabases have a similar Mg# (0.64 and 0.60) and Ni content (98 and 127 ppm), and it is argued that the magma differentiated at depth and was emplaced as a uniform low-Mg magma. The Wanapitei intrusion and Kukagami Lake sill are an exception in that although the quartz diabase has La/Sm similar to the Nipissing magma type, which suggests that they came from the same source, the Mg# (0.68–0.71) and Ni content (130–141 ppm) are higher, which may suggest that they are either slightly more primitive examples of the normal Nipissing magma or that cumulus hypersthene has been resorbed. The light rare earth element enriched signature of the Nipissing magmas was perhaps introduced from the continental crust as the magma migrated from the mantle to the surface, but a remarkably constant and large amount (>20%) of crustal contamination would be required. An addition of 1 –3% shale to the source of a transitional mid-ocean ridge basalt type magma can broadly reproduce the compositional features of the Nipissing magma type. The source characteristics were perhaps imparted during subduction accompanying the terminal Kenoran orogeny.


Sign in / Sign up

Export Citation Format

Share Document