scholarly journals Phosphorylation of Arp2 is not essential for Arp2/3 complex activity in fission yeast

2018 ◽  
Vol 1 (5) ◽  
pp. e201800202 ◽  
Author(s):  
Alexander E Epstein ◽  
Sofia Espinoza-Sanchez ◽  
Thomas D Pollard

LeClaire et al presented evidence that phosphorylation of three sites on the Arp2 subunit activates the Arp2/3 complex to nucleate actin filaments. We mutated the homologous residues of Arp2 (Y198, T233, and T234) in the fission yeast genome to amino acids that preclude or mimic phosphorylation. Arp2/3 complex is essential for the viability of fission yeast, yet strains unable to phosphorylate these sites grew normally. Y198F/T233A/T234A Arp2 was only nonfunctional if GFP-tagged, as observed by LeClaire et al in Drosophila cells. Replacing both T233 and T234 with aspartic acid was lethal, suggesting that phosphorylation might be inhibitory. Nevertheless, blocking phosphorylation at these sites had the same effect as mimicking it: slowing assembly of endocytic actin patches. Mass spectrometry revealed phosphorylation at a fourth conserved Arp2 residue, Y218, but both blocking and mimicking phosphorylation of Y218 only slowed actin patch assembly slightly. Therefore, phosphorylation of Y198, T233, T234, and Y218 is not required for the activity of fission yeast Arp2/3 complex.

2018 ◽  
Author(s):  
Alexander E. Epstein ◽  
Sofia Espinoza-Sanchez ◽  
Thomas D. Pollard

AbstractLeClaire et al. presented evidence that phosphorylation of three sites on the Arp2 subunit activates Arp2/3 complex to nucleate actin filaments. We mutated the homologous residues of Arp2 (Y198, T233 and T234) in the fission yeast genome to amino acids that preclude or mimic phosphorylation. Arp2/3 complex is essential for the viability of fission yeast, yet strains unable to phosphorylate these sites grew normally. Y198F/T233A/T234A Arp2 was only nonfunctional if GFP-tagged, as observed by LeClaire et al. in Drosophila cells. Replacing both T233 and T234 with aspartic acid was lethal, suggesting that phosphorylation might be inhibitory. Nevertheless, blocking phosphorylation at these sites had the same effect as mimicking it: slowing assembly of endocytic actin patches. Mass spectrometry revealed phosphorylation at a fourth conserved Arp2 residue, Y218, but both blocking and mimicking phosphorylation of Y218 only slowed actin patch assembly slightly. Therefore, phosphorylation of Y198, T233, T234 and Y218 is not required for the activity of fission yeast Arp2/3 complex.SummaryPrevious research concluded that phosphorylation at three sites on Arp2 is necessary to activate Arp2/3 complex. Epstein et al. make genomic substitutions blocking or mimicking phosphorylation to demonstrate that phosphorylation of these three sites does not regulate Arp2/3 complex in fission yeast.


2010 ◽  
Vol 21 (16) ◽  
pp. 2905-2915 ◽  
Author(s):  
Julien Berro ◽  
Vladimir Sirotkin ◽  
Thomas D. Pollard

We used the dendritic nucleation hypothesis to formulate a mathematical model of the assembly and disassembly of actin filaments at sites of clathrin-mediated endocytosis in fission yeast. We used the wave of active WASp recruitment at the site of the patch formation to drive assembly reactions after activation of Arp2/3 complex. Capping terminated actin filament elongation. Aging of the filaments by ATP hydrolysis and γ-phosphate dissociation allowed actin filament severing by cofilin. The model could simulate the assembly and disassembly of actin and other actin patch proteins using measured cytoplasmic concentrations of the proteins. However, to account quantitatively for the numbers of proteins measured over time in the accompanying article ( Sirotkin et al., 2010 , MBoC 21: 2894–2904), two reactions must be faster in cells than in vitro. Conditions inside the cell allow capping protein to bind to the barbed ends of actin filaments and Arp2/3 complex to bind to the sides of filaments faster than the purified proteins in vitro. Simulations also show that depolymerization from pointed ends cannot account for rapid loss of actin filaments from patches in 10 s. An alternative mechanism consistent with the data is that severing produces short fragments that diffuse away from the patch.


2017 ◽  
Author(s):  
Ingrid M. Weiss ◽  
Christina Muth ◽  
Robert Drumm ◽  
Helmut O.K. Kirchner

AbstractCalorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185°C and 280°C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70 % volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA ^ a (NH3) + b (H2O) + c (CO2) + d (H2S) + e (residue), with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


2018 ◽  
Vol 69 (10) ◽  
pp. 2794-2798
Author(s):  
Alina Diana Panainte ◽  
Ionela Daniela Morariu ◽  
Nela Bibire ◽  
Madalina Vieriu ◽  
Gladiola Tantaru ◽  
...  

A peptidic hydrolysate has been obtained through hydrolysis of bovine hemoglobin using pepsin. The fractioning of the hydrolysate was performed on a column packed with CM-Sepharose Fast Flow. The hydrolysate and each fraction was filtered and then injected into a HPLC system equipped with a Vydak C4 reverse phase column (0.46 x 25 cm), suitable for the chromatographic separation of large peptides with 20 to 30 amino acids. The detection was done using mass spectrometry, and the retention time, size and distribution of the peptides were determined.


1984 ◽  
Vol 49 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
Karel Hauzer ◽  
Tomislav Barth ◽  
Linda Servítová ◽  
Karel Jošt

A post-proline endopeptidase (EC 3.4.21.26) was isolated from pig kidneys using a modified method described earlier. The enzyme was further purified by ion exchange chromatography on DEAE-Sephacel. The final product contained about 95% of post-proline endopeptidase. The enzyme molecule consisted of one peptide chain with a relative molecular mass of 65 600 to 70 000, containing a large proportion of acidic and alifatic amino acids (glutamic acid, aspartic acid and leucine) and the N-terminus was formed by aspartic acid or asparagine. In order to prevent losses of enzyme activity, thiol compounds has to be added.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Takashi Kanamoto ◽  
Takashi Tachibana ◽  
Yasushi Kitaoka ◽  
Toshio Hisatomi ◽  
Yasuhiro Ikeda ◽  
...  

Purpose. To investigate the effect of ocular hypertension-induced isomerization of aspartic acid in retinal proteins. Methods. Adult Wistar rats with ocular hypertension were used as an experimental model. D-β-aspartic acid-containing proteins were isolated by SDS-PAGE and western blot with an anti-D-β-aspartic acid antibody and identified by liquid chromatography-mass spectrometry analysis. The concentration of ATP was measured by ELISA. Results. D-β-aspartic acid was expressed in a protein band at around 44.5 kDa at much higher quantities in the retinas of rats with ocular hypertension than in those of normotensive rats. The 44.5 kDa protein band was mainly composed of α-enolase, S-arrestin, and ATP synthase subunits α and β, in both the ocular hypertensive and normotensive retinas. Moreover, increasing intraocular pressure was correlated with increasing ATP concentrations in the retinas of rats. Conclusion. Ocular hypertension affected the expression of proteins containing D-β-aspartic acid, including ATP synthase subunits, and up-regulation of ATP in the retinas of rats.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 120 ◽  
Author(s):  
Jiuliang Xu ◽  
Liangquan Wu ◽  
Bingxin Tong ◽  
Jiaxu Yin ◽  
Zican Huang ◽  
...  

Oolong tea, one of the most famous tea beverages in China, contains specialized metabolites contributing to rich flavors and human health. Accumulation patterns of such metabolites and underlying regulatory mechanisms significantly vary under different growth conditions. To optimize quality and yield while minimizing environmental effects, three treatments were designed in this study: Conventional fertilization, optimized fertilization, and optimized fertilization supplemented with magnesium (Mg). We investigated the yield, taste quality, primary and secondary metabolites of oolong tea, and found that a substantial reduction in chemical fertilizers (nutrient optimization by reducing 43% N, 58% P2O5 and 55% K2O) did not affect the tea yield in this study. Interestingly, Mg fertilization is an important factor influencing amino acid and sugar accumulation in oolong tea, resulting in higher concentrations of total free amino acids and a lower ratio of tea polyphenols (TP) to free amino acids (FAA). Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined multivariate analyses revealed distinct features of metabolite accumulation in leaves of three different treatments, as indicated by 34 differentially accumulated characteristic compounds. The levels of serine, aspartic acid, isoleucine, phenylalanine, theanine, and proline were reduced by fertilizer optimization and increased by Mg supplementation. Mg particularly promoted theanine accumulation favoring a stronger umami taste of oolong tea, while decreasing astringency and bitter metabolites. Thus, Mg application paves a new path for tea quality improvement in Southern China where Mg deficiency in the soil is a frequent limiting factor for crop production.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianhua Cao ◽  
Benjamin Balluff ◽  
Martijn Arts ◽  
Ludwig J. Dubois ◽  
Luc J. C. van Loon ◽  
...  

Abstract Background Metabolic reprogramming is a common phenomenon in tumorigenesis and tumor progression. Amino acids are important mediators in cancer metabolism, and their kinetics in tumor tissue are far from being understood completely. Mass spectrometry imaging is capable to spatiotemporally trace important endogenous metabolites in biological tissue specimens. In this research, we studied L-[ring-13C6]-labeled phenylalanine and tyrosine kinetics in a human non-small cell lung carcinoma (NSCLC) xenografted mouse model using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI). Methods We investigated the L-[ring-13C6]-Phenylalanine (13C6-Phe) and L-[ring-13C6]-Tyrosine (13C6-Tyr) kinetics at 10 min (n = 4), 30 min (n = 3), and 60 min (n = 4) after tracer injection and sham-treated group (n = 3) at 10 min in mouse-xenograft lung tumor tissues by MALDI-FTICR-MSI. Results The dynamic changes in the spatial distributions of 19 out of 20 standard amino acids are observed in the tumor tissue. The highest abundance of 13C6-Phe was detected in tumor tissue at 10 min after tracer injection and decreased progressively over time. The overall enrichment of 13C6-Tyr showed a delayed temporal trend compared to 13C6-Phe in tumor caused by the Phe-to-Tyr conversion process. Specifically, 13C6-Phe and 13C6-Tyr showed higher abundances in viable tumor regions compared to non-viable regions. Conclusions We demonstrated the spatiotemporal intra-tumoral distribution of the essential aromatic amino acid 13C6-Phe and its de-novo synthesized metabolite 13C6-Tyr by MALDI-FTICR-MSI. Our results explore for the first time local phenylalanine metabolism in the context of cancer tissue morphology. This opens a new way to understand amino acid metabolism within the tumor and its microenvironment.


Sign in / Sign up

Export Citation Format

Share Document