scholarly journals Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH

2022 ◽  
Vol 5 (4) ◽  
pp. e202101124
Author(s):  
Elena Rensen ◽  
Stefano Pietropaoli ◽  
Florian Mueller ◽  
Christian Weber ◽  
Sylvie Souquere ◽  
...  

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.

2021 ◽  
Author(s):  
Elena Rensen ◽  
Stefano Pietropaoli ◽  
Christian Weber ◽  
Sylvie Souquere ◽  
Pierre Isnard ◽  
...  

AbstractThe current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize viral RNA directly in infected cells are critical to analyze its replication cycle, screen for therapeutic molecules or study infections in human tissue. Here, we report the design, validation and initial application of fluorescence in situ hybridization (FISH) probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy (EM). We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening and diagnostics.


1999 ◽  
Vol 73 (1) ◽  
pp. 297-306 ◽  
Author(s):  
Sean P. J. Whelan ◽  
Gail W. Wertz

ABSTRACT The RNA-dependent RNA polymerase of vesicular stomatitis virus (VSV), a nonsegmented negative-strand RNA virus, directs two discrete RNA synthetic processes, transcription and replication. Available evidence suggests that the two short extragenic regions at the genomic termini, the 3′ leader (Le) and the complement of the 5′ trailer (TrC), contain essential signals for these processes. We examined the roles in transcription and replication of sequences in Le and TrC by monitoring the effects of alterations to the termini of subgenomic replicons, or infectious viruses, on these RNA synthetic processes. Distinct elements in Le were found to be required for transcription that were not required for replication. The promoter for mRNA transcription was shown to include specific sequence elements within Le at positions 19 to 29 and 34 to 46, a separate element at nucleotides 47 to 50, the nontranscribed leader-N gene junction. The sequence requirements for transcription within the Le region could not be supplied by sequences found at the equivalent positions in TrC. In contrast, sequences from either Le or TrC functioned well to signal replication, indicating that within the confines of the VSV termini, the sequence requirements for replication were less stringent. Deletions engineered at the termini showed that the terminal 15 nucleotides of either Le or TrC allowed a minimal level of replication. Within these confines, levels of replication were affected by both the extent of complementarity between the genomic termini and the involvement of the template in transcription. In agreement with our previous observations, increasing the extent of complementarity between the natural termini increased levels of replication, and this effect was most operative at the extreme genome ends. In addition, abolishing the use of Le as a promoter for transcription enhanced replication. These analyses (i) identified signals at the termini required for transcription and replication and (ii) showed that Le functions as a less efficient promoter for replication than TrC at least in part because of its essential role in transcription. Consequently, these observations help explain the asymmetry of VSV replication which results in the synthesis of more negative- than positive-sense replication products in infected cells.


2021 ◽  
Author(s):  
Bingyu Yan ◽  
Srishti Chakravorty ◽  
Carmen Mirabelli ◽  
Luopin Wang ◽  
Jorge L. Trujillo-Ochoa ◽  
...  

Pathogenic mechanisms underlying severe SARS-CoV2 infection remain largely unelucidated. High throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in RNA-seq data from SARS-CoV2 infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV2 is a positive-sense RNA virus that replicates in the cytoplasm it does not have a nuclear phase in its life cycle. Thus, it is biologically unlikely to be in a location where splicing events could result in genome integration. Therefore, we investigated the biological authenticity of HVC events. In contrast to true biological events such as mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with COVID-19 and infected cell lines were highly irreproducible. RNA-seq library preparation is inherently error-prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spike-in RNA from an unrelated species, such as fruit-fly, we estimated that ∼1% of RNA-seq reads are artifactually chimeric. In SARS-CoV2 RNA-seq we found that the frequency of HVC events was, in fact, not greater than this background “noise”. Finally, we developed a novel experimental approach to enrich SARS-CoV2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich for HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV2 infected cells are extremely rare and are likely artifacts arising from either random template switching of reverse-transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV2 fusion to cellular genes and/or integration into human genomes. Importance The pathogenic mechanisms underlying SARS-CoV2, the virus responsible for COVID-19, are not fully understood. In particular, relatively little is known why some individuals develop life-threatening or persistent COVID-19. Recent studies identified host-virus chimeric (HVC) reads in RNA-sequencing data from SARS-CoV2 infected cells and suggested that HVC events support potential “human genome invasion” and “integration” by SARS-CoV2. This suggestion has fueled concerns about the long-term effects of current mRNA vaccines that incorporate elements of the viral genome. SARS-CoV2 is a positive-sense, single-stranded RNA virus that does not encode a reverse transcriptase and does not include a nuclear phase in its life cycle, so some doubts have rightfully been expressed regarding the authenticity of HVCs and the role played by endogenous retrotransposons in this phenomenon. Thus, it is important to independently authenticate these HVC events. Here we provide several evidences suggesting that the observed HVC events are likely artifactual.


Epigenomics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 465-480
Author(s):  
Bimal P Jit ◽  
Sahar Qazi ◽  
Rakesh Arya ◽  
Ankit Srivastava ◽  
Nimesh Gupta ◽  
...  

Severe acute respiratory syndrome coronavirus-2 is a positive-sense RNA virus, a causal agent of ongoing COVID-19 pandemic. ACE2R methylation across three CpG sites (cg04013915, cg08559914, cg03536816) determines the host cell’s entry. It regulates ACE2 expression by controlling the SIRT1 and KDM5B activity. Further, it regulates Type I and III IFN response by modulating H3K27me3 and H3K4me3 histone mark. SARS-CoV-2 protein with bromodomain and protein E mimics bromodomain histones and evades from host immune response. The 2′-O MTases mimics the host’s cap1 structure and plays a vital role in immune evasion through Hsp90-mediated epigenetic process to hijack the infected cells. Although the current review highlighted the critical epigenetic events associated with SARS-CoV-2 immune evasion, the detailed mechanism is yet to be elucidated.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1062
Author(s):  
Victoria Callahan ◽  
Seth Hawks ◽  
Matthew A. Crawford ◽  
Caitlin W. Lehman ◽  
Holly A. Morrison ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Patients with severe COVID-19 may develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) and require mechanical ventilation. Key features of SARS-CoV-2 induced pulmonary complications include an overexpression of pro-inflammatory chemokines and cytokines that contribute to a ‘cytokine storm.’ In the current study an inflammatory state in Calu-3 human lung epithelial cells was characterized in which significantly elevated transcripts of the immunostimulatory chemokines CXCL9, CXCL10, and CXCL11 were present. Additionally, an increase in gene expression of the cytokines IL-6, TNFα, and IFN-γ was observed. The transcription of CXCL9, CXCL10, IL-6, and IFN-γ was also induced in the lungs of human transgenic angiotensin converting enzyme 2 (ACE2) mice infected with SARS-CoV-2. To elucidate cell signaling pathways responsible for chemokine upregulation in SARS-CoV-2 infected cells, small molecule inhibitors targeting key signaling kinases were used. The induction of CXCL9, CXCL10, and CXCL11 gene expression in response to SARS-CoV-2 infection was markedly reduced by treatment with the AKT inhibitor GSK690693. Samples from COVID-19 positive individuals also displayed marked increases in CXCL9, CXCL10, and CXCL11 transcripts as well as transcripts in the AKT pathway. The current study elucidates potential pathway specific targets for reducing the induction of chemokines that may be contributing to SARS-CoV-2 pathogenesis via hyperinflammation.


2008 ◽  
Vol 82 (9) ◽  
pp. 4461-4470 ◽  
Author(s):  
Ranjit Warrier ◽  
Benjamin R. Linger ◽  
Barbara L. Golden ◽  
Richard J. Kuhn

ABSTRACT Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Yuri I. Wolf ◽  
Darius Kazlauskas ◽  
Jaime Iranzo ◽  
Adriana Lucía-Sanz ◽  
Jens H. Kuhn ◽  
...  

ABSTRACTViruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in animals and plants. The recent advances of metaviromics prompted us to perform a detailed phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome. The only universal gene among RNA viruses is the gene encoding the RNA-dependent RNA polymerase (RdRp). We developed an iterative computational procedure that alternates the RdRp phylogenetic tree construction with refinement of the underlying multiple-sequence alignments. The resulting tree encompasses 4,617 RNA virus RdRps and consists of 5 major branches; 2 of the branches include positive-sense RNA viruses, 1 is a mix of positive-sense (+) RNA and double-stranded RNA (dsRNA) viruses, and 2 consist of dsRNA and negative-sense (−) RNA viruses, respectively. This tree topology implies that dsRNA viruses evolved from +RNA viruses on at least two independent occasions, whereas −RNA viruses evolved from dsRNA viruses. Reconstruction of RNA virus evolution using the RdRp tree as the scaffold suggests that the last common ancestors of the major branches of +RNA viruses encoded only the RdRp and a single jelly-roll capsid protein. Subsequent evolution involved independent capture of additional genes, in particular, those encoding distinct RNA helicases, enabling replication of larger RNA genomes and facilitating virus genome expression and virus-host interactions. Phylogenomic analysis reveals extensive gene module exchange among diverse viruses and horizontal virus transfer between distantly related hosts. Although the network of evolutionary relationships within the RNA virome is bound to further expand, the present results call for a thorough reevaluation of the RNA virus taxonomy.IMPORTANCEThe majority of the diverse viruses infecting eukaryotes have RNA genomes, including numerous human, animal, and plant pathogens. Recent advances of metagenomics have led to the discovery of many new groups of RNA viruses in a wide range of hosts. These findings enable a far more complete reconstruction of the evolution of RNA viruses than was attainable previously. This reconstruction reveals the relationships between different Baltimore classes of viruses and indicates extensive transfer of viruses between distantly related hosts, such as plants and animals. These results call for a major revision of the existing taxonomy of RNA viruses.


2021 ◽  
Author(s):  
Yu-Sheng Chen ◽  
Shuaiyao Lu ◽  
Bing Zhang ◽  
Tingfu Du ◽  
Wen-Jie Li ◽  
...  

SARS-CoV-2, as the causation of severe epidemic of COVID-19, is one kind of positive single-stranded RNA virus with high transmissibility. However, whether or not SARS-CoV-2 can integrate into host genome needs thorough investigation. Here, we performed both RNA sequencing (RNA-seq) and whole genome sequencing on SARS-CoV-2 infected human and monkey cells, and investigated the presence of host-virus chimeric events. Through RNA-seq, we did detect the chimeric host-virus reads in the infected cells. But further analysis using mixed libraries of infected cells and uninfected zebrafish embryos demonstrated that these reads are falsely generated during library construction. In support, whole genome sequencing also didn't identify the existence of chimeric reads in their corresponding regions. Therefore, the evidence for SARS-CoV-2's integration into host genome is lacking.


Sign in / Sign up

Export Citation Format

Share Document