Effect of Pre-soaking Mustard Green Seeds Prior to Cold Plasma Treatment on Bioactive Aspects of Microgreens

2021 ◽  
Vol 5 (8) ◽  
pp. 1422-1426
2021 ◽  
Vol 25 (03) ◽  
pp. 667-676
Author(s):  
Worachot Saengha

The aims of this work were to study growth, isothiocyanate (ITC), bioactive content, antioxidant activity and anticancer activity of mustard green (MG) microgreens grown from seeds treated with cold plasma at 21 and 23 kV for 5 min. Microgreens from plasma-treated seeds at 23 kV showed almost 2-fold increased ITC content (1.57 ± 0.05 mmol/100 g DW) compared to MG from seeds without plasma (control), showed the highest total phenolic content (TPC) (6.76 ± 0.14 mg GAE/g DW) and total flavonoid content (TFC) (0.16±0.01 mg RE/g DW). However, MG plasma-treated seeds at 21 kV showed the highest antioxidant activity from 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay (3.51 ± 0.38 mg TE/g DW). Allyl isothiocyanate and 3-butenyl isothiocyanate were the dominant ITCs in MG. The highest cytotoxicities using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against MCF-7 (IC50 of 32.44 ± 1.64 μg/mL) and HepG2 (IC50 of 28.58 ± 1.04 μg/mL) after 72 h exposure were found in MG from plasma-treated seeds at 23 kV and MG from control seeds, respectively. However, MG from plasma-treated seeds at 21 kV exhibited the highest antiproliferative effect against MCF-7 (IC50 of 23.23 ± 0.23 μg/mL) and HepG2 (IC50 of 20.44 ± 0.56 μg/mL) for 14 days and also the most potent antimigratory effect. MG from cold plasma inhibited MMP-9 protein expression in both cancers indicating antimigratory property. MG from cold plasma also significantly reduced MMP-9 mRNA expression in both cancers when compared to the control and untreated cells. In conclusion, cold plasma treatment on seeds seemed to be an innovative tool to enhance ITC, TPC, TFC and anticancer properties of MG microgreens for better health implications. © 2021 Friends Science Publishers


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


Author(s):  
Neda Mollakhalili-Meybodi ◽  
Mojtaba Yousefi ◽  
Amene Nematollahi ◽  
Nasim Khorshidian
Keyword(s):  

2014 ◽  
Vol 118 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Nrusimha Nath Misra ◽  
Kevin M. Keener ◽  
Paula Bourke ◽  
Jean-Paul Mosnier ◽  
Patrick J. Cullen

2021 ◽  
Vol 30 (9) ◽  
pp. 680-683
Author(s):  
Koen Lim ◽  
Maarten Hieltjes ◽  
Anel van Eyssen ◽  
Paulien Smits
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document