scholarly journals Trends of Changes of Maximum Air Temperature in Ukraine as an Impact Factor on Population Health

Purpose. The aim of this research is detection of trends of changes (according to fact and scenario data) of extreme air temperature as a component of thermal regime in different regions of Ukraine because of global climate change. Methods. System analysis, statistical methods. Results. Time distribution of maximum air temperature regime characteristics based on results of observations on the stations located in different regions of Ukraine during certain available periods: Uzhgorod (1946-2018), Kharkiv (1936-2005), Оdessа (1894-2005), аnd also according to scenarios of low (RCP2.6), medium (RCP4.5) and high (RCP8.5) levels of greenhouse gases emissions. Meanwhile, air temperature ≥ 25°С was considered high (days with maximum temperature within 25,0-29,9°С are hot), ≥ 30°С was considered very high (days with such temperature are abnormaly hot). Trends of changes of extreme air temperatures were identified as a component of thermal regime in different regions of Ukraine within global climate changes. Dynamics of maximum air temperature and its characteristics in ХХ and beginning of ХХІ centuries were researched. Expected time changes of maximum air temperature and number of days with high temperature during 2021-2050 were analyzed by RCP2.6, RCP4.5 and RCP8.5 scenarios. There were identified the highest day air temperatures possible once in a century and also possibility of maximum day temperature more than 30°С by RCP4.5 scenario. Well-timed prediction of climate changes will help evaluate their impact on human and natural systems which will be useful for development and taking preventive measures towards minimization of negative influence of such changes. Conclusions. Processes of climate warming in Ukraine are activating. There was determined a strong trend on increasing of average maximum of air temperature in winter with speed 0.17-0,39 degrees centigrade/10 years. According to climatic norm this index mainly increased mostly (up to 3,3 degrees centigrade) in January in North-East of the country. In future such anomalies will grow. Determination of correlation between climate and health is the base for taking protective measures against perils for population health connected with climate.

Author(s):  
S.V. Savchuk ◽  
V.E. Timofeev ◽  
O.A. Shcheglov ◽  
V.A. Artemenko ◽  
I.L. Kozlenko

The object of the study is the maximum daily air temperature during the months of the year over 1991-2016 by the data of 186 meteorological stations of Ukraine. Extreme values of the maximum daily temperature equal to or exceeded their 95th (Tmax95p and above, ºС) percentile were taken as extreme. The article sets the dates (137 cases) of extreme values of maximum air temperature on more than 60 % of the territory. For these dates, 13 meteorological parameters were selected: average, minimum, and maximum air temperatures; average, minimum and maximum relative humidity; station and sea-level pressure; average, maximum (from 8 synoptic hours) wind speed; rainfall; height of snow cover. The purpose of this work is to determine the correlation coefficient (K), in particular, statistically significant (K≤-0.6, K≥0.6), on these dates between selected meteorological parameters at 186 meteorological stations of Ukraine for 1991-2013. The density of the cases of statistically significant dependence between the meteorological parameters in extremely warm days in separate seasons is determined. In extremely warm days, meteorological parameters and areas with statistically significant correlations at K≤-0.6 were detected: T and F (focally in southern and some western regions with significant density) − in winter; T and F (with the highest density ubiquitous or almost ubiquitous), P and V (in a large number of regions, usually west or right-bank, but with less frequency) − in the transition seasons, and in the autumn between − T and F (in the south with smaller density) and P and F (in some areas of the north, northwest, west, lower east). In all seasons, such a correlation between other meteorological parameters had a focal distribution, usually with a smaller density. In these days, a focal distribution with a small frequency of dependencies at K≥0.6 was found between the meteorological parameters detected (F and V in transition seasons, T and F in winter), except for similar ones. However, such dependence is observed between T and V in some regions in winter and autumn and in some areas of south, southeast, east with a smaller density. The study of the maximum daily temperature is relevant, because from the level of natural hydrometeorological phenomena it is accompanied by dangerous phenomena, negatively affecting the weather dependent industries.


2018 ◽  
Vol 57 ◽  
pp. 02010 ◽  
Author(s):  
Katarzyna Rozbicka ◽  
Tomasz Rozbicki

The study presents the characteristics of the occurrence of smog episodes - days with exceeded the limit value of 8-hour tropospheric ozone concentration (120 μg.m-3) with the occurrence of hot days (maximum air temperature greater than 25°C), very hot (maximum air temperature greater than 30°C) and heat waves during 13-year period 2004-2016 in the area of Warsaw, Poland. In the analyzed period, the average number of hot days was 45, and very hot days was 8. The highest number of these days occurred in 2015, 54 and 20 days respectively. Heat waves were short and lasted usually 3-4 days. The highest number of them was recorded in 2010 and 2015 (14 days). The highest ozone concentration value 189 μg.m-3was recorded on 28 May 2005, thus exceeding the information threshold (180 μg.m-3for the value of 1 hour ozone concentration). However, the number of days with the exceeded limit value of ozone concentration was not in any year exceeded the target value, i.e. 25 days in a calendar year. The relatively stronger relationship (R=0.513) in comparison to others obtained between average maximum temperature during LTO exceedance days and average ozone concentration during these days but it was not statistically significant.


2016 ◽  
Vol 1 (1) ◽  
pp. 37 ◽  
Author(s):  
Ali Rahmat ◽  
Abdul Mutolib

Increases in air temperature indicate a global climate change. Thus, information in the change of temperature regional scale is important to support global data. The present research was conducted in Gifu city and Ogaki city located in Gifu prefecture, Japan. The results showed that, average air temperatures in both cities are quite similar with a difference value of under 1<sup>o</sup>C. Maximum air temperature in Gifu city is significantly higher than Ogaki city, whereas minimum air temperature in Gifu city is significantly lower than in Ogaki city. Daily range of air temperature in Gifu city significantly higher than in Ogaki city. In both cities, air temperature relatively increased in three decades. This is because of different in land characteristics in both cities.


Author(s):  
MARGARYAN V.G. ◽  

The features of the thermal regime of the surface air layer in the Debed river basin are considered. A statistical analysis of the average annual and average seasonal values of air temperature from 1964 to 2018 was carried out, two periods were identified, their time course was shown. The analysis was carried out using data from six meteorological stations representing the lowland, mountain and high-mountain climatic zones of the Debed river basin. A correlation was obtained between the absolute altitude and the monthly average values of air temperature for January and July, which can be used to assess the thermal conditions of unexplored or poorly studied territories and for cartography. The time course of average values of air temperatures for the seasonal period has been studied. Analysis of trend lines of temporal changes in air temperatures shows that in all situations on the territory of the basin as a whole, there is a tendency of temperature growth. Moreover, with a range of interannual fluctuations, a break in the course of temperatures in the early to mid 1990 is clearly visible, after which their significant increase began. It turned out that a significant increase in seasonal temperatures is observed especially over the period 1993-2018, which means that the annual warming after the mid 1990 occurred primarily due to summer and spring seasons. The regular dynamics indicates that in the studied area in terms of temperatures, a tendency of softening winters, a decrease in the water content of rivers, aridization of the climate. The results obtained can be used to assess the regularities of the spatial-temporal distribution of the temperature of the study area, to clarify the thermal balance, for the rational use of heat resources, as well as in the development of strategic programs for longterm analysis.


1928 ◽  
Vol 18 (1) ◽  
pp. 90-122 ◽  
Author(s):  
E. McKenzie Taylor

1. The soil temperatures in Egypt at a number of depths have been recorded by means of continuous recording thermometers. In general, the records show that the amplitude of the temperature wave at the surface of the soil is considerably greater than the air temperature wave. There is, however, a considerable damping of the wave with depth, no daily variation in temperature being observed at a depth of 100 cm.2. No definite relation between the air and soil temperatures could be traced. The maximum air temperature was recorded in May and the maximum soil temperature in July.3. The amplitude of the temperature wave decreases with increase in depth. The decrease in amplitude of the soil temperature wave is not regular owing to variations in the physical properties of the soil layers. Between any two depths, the ratio of the amplitudes of the temperature waves is constant throughout the year. The amplitude of the soil temperature wave bears no relation to the amplitude of the air temperature wave.4. The time of maximum temperature at the soil surface is constant throughout the year at 1 p.m. The times of maximum temperature at depths below the surface lag behind the time of surface maximum, but they are constant throughout the year. When plotted against depth, the times of maximum at the various soil depths lie on a straight line.


2020 ◽  
Author(s):  
Hanieh Seyedhashemi ◽  
Florentina Moatar ◽  
Jean-Philippe Vidal ◽  
Aurélien Beaufort ◽  
André Chandesris ◽  
...  

&lt;p&gt;Human activities and natural processes are the main drivers of the spatio-temporal variability of thermal regime. Despite a few local studies on the thermal regime variability, regional assessments are scarce in the scientific literature. However, regional assessments allow tracing systematic human-induced changes emerging from some types of anthropogenic structures like dams or ponds and identifying the locations of highly influenced reaches.&lt;/p&gt;&lt;p&gt;In the current study, we propose a framework to detect the influence of dams and ponds on stream temperature. We use observational data from 526 evenly distributed hourly stream temperature stations in the Loire River catchment, France (110,000 km&lt;sup&gt;2&lt;/sup&gt;). The data consist of unbalanced time series of natural and altered thermal regimes that contain at least 80 summer days from 2000&amp;#8211;2018. By comparing time series of observed stream temperature and air temperature, we define five indicators to distinguish different patterns of thermal regime. Three of them are based on weekly stream-air temperature linear regressions (slope; intercept; and coefficient of determination). The remaining two indicators compare monthly air and stream temperature regime: 1) the proportion of times stream temperature is greater than air temperature from March&amp;#8211;October (&amp;#8220;frequency&amp;#8221;), and 2) the lag time between the annual peak in air temperature and annual peak in stream temperature (&amp;#8220;shift&amp;#8221;).&lt;/p&gt;&lt;p&gt;K-means clustering partitioned stations into three clusters: 1) pond-like, 2) dam-like 3) and natural, with 164, 37, and 316 stations, respectively. Supporting this cluster analysis, 93% of stations in pond-like cluster have upstream ponds, and 55% of stations in dam-like cluster have upstream large dams. Pond-like stations have the greatest slope between weekly stream and air temperatures (slope = 0.4) and have stream temperatures greater than air temperatures more frequently (68%) than other clusters. In contrast, dam-like stations have the lowest correlations between weekly stream and air temperatures (mean R&lt;sup&gt;2&lt;/sup&gt;=0.3, compared to 0.7 for the other two clusters). Dam-like stations also exhibit the largest shifts in stream thermal regime relative to air temperature (mean shift = 30 days). Impounded runoff index (IRI), the ratio of reservoir volume to annual discharge, best explaines variability within the dam-like cluster. For pond-like stations, catchment areas and mean upstream ponded surface area best explain the within-cluster variability, particularly for the frequency indicator, although this relationship is sensitive to interannual air temperature regime.&lt;/p&gt;&lt;p&gt;These findings support modelers in quantifying the downstream impacts of different types of anthropogenic structures and managers in surveying and monitoring stream networks through identification of critical reaches.&lt;/p&gt;


2016 ◽  
Vol 20 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Anna Staszczuk ◽  
Tadeusz Kuczyński

Abstract The effects of changes in Global climate on the prolonging time and the frequency of the periods of very high outside air temperature at summer were shown in the paper with particular emphasis on European moderate climate countries. In these countries, residential buildings, are usually equipped neither in air conditioning equipment, nor in ordinary window blinds. As the most promising solution it is suggested to resign completely or partially from ground slab thermal insulation, directly utilizing ground heat storage capacity. The paper includes detailed simulations on potential effect of various kind of floor construction and actions preventing high indoor air temperatures in building approach on air temperature inside the one-storey, passive residential buildings during consecutive days of very high outdoor temperature and total energy used yearly for additional heating and air conditioning.


2021 ◽  
Vol 877 (1) ◽  
pp. 012033
Author(s):  
Nabeel Saleem Saad Al-Bdairi ◽  
Salah L. Zubaidi ◽  
Hussein Al-Bugharbee ◽  
Khalid Hashim ◽  
Sabeeh L. Farhan ◽  
...  

Abstract In this research, the singular spectrum analysis technique is combined with a linear autoregressive model for the purpose of prediction and forecasting of monthly maximum air temperature. The temperature time series is decomposed into three components and the trend component is subjected for modelling. The performance of modelling for both prediction and forecasting is evaluated via various model fitness function. The results show that the current method presents an excellent performance in expecting the maximum air temperature in future based on previous recordings.


Időjárás ◽  
2021 ◽  
Vol 125 (2) ◽  
pp. 229-253
Author(s):  
Nikola R. Bačević ◽  
Nikola M. Milentijević ◽  
Aleksandar Valjarević ◽  
Ajša Gicić ◽  
Dušan Kićović ◽  
...  

The paper presents trends for three categories of variables: average annual, average maximum and average minimum air temperatures. Data was provided by the meteorological yearbooks of the Republic Hydrometeorological Service of Serbia. The main goal of this paper is to detect possible temperature trends in Central Serbia. The trend equation, trend magnitude, and Mann-Kendall non-parametric test were used in the analysis of climate parameters. The used statistical methods were supplemented by GIS numerical analysis, which aimed to analyze the spatial distribution of isotherms from 1949 to 2018. The obtained results indicate that out of the 72 analyzed time series, an increase in air temperature is dominant in 61 time series, while 11 time series show no changes. The highest increase was recorded in the average maximum time series (4.2 °C), followed by an increase of 3.5°C in average maximum air temperatures. The highest increase in the average annual time-series was 3.0 °C. The lowest increases in air temperature were recorded in the average minimum time series (0.1 and 0.2 °C). In two average minimum time series a decrease in average air temperatures was identified (-0.6 and -0.4 °C. The application of GIS tools indicates the existence of interregional differences in the arrangement of isotherms, leaded by the orography of the terrain. In the spatial distribution of the analyzed variables, "poles of heat" and "poles of cold" stand out, and the influence of the urban heat island is evident (especially in the case of the urban agglomeration of Belgrade). The manifested spatial patterns of air temperature need to be further examined and the correlation with possible causes need to be determined. For these reasons, the paper provides a solid basis for studying the climate of this area in the future, as it provides insight into climate dynamics over the past decades.


2018 ◽  
Author(s):  
Olli Karjalainen ◽  
Miska Luoto ◽  
Juha Aalto ◽  
Jan Hjort

Abstract. The thermal dynamics of permafrost shape Earth surface systems and human activity in the Arctic and have implications to global climate. Improved understanding of the fine-scale variability in the circumpolar ground thermal regime is required to account for its sensitivity to changing climatic and geoecological conditions. Here, we statistically related circumpolar observations of mean annual ground temperature (MAGT) and active-layer thickness (ALT) to high-resolution (~1 km2) geospatial data to identify their key environmental drivers. The multivariate models fitted well to MAGT and ALT observations with average R2 values being ~0.94 and 0.78, respectively. Corresponding predictive performances in terms of root mean square error were ~1.31 °C and 87 cm. Freezing air temperatures were the main driver of MAGT in permafrost conditions while thawing temperatures dominated when permafrost was not present. ALT was most strongly related to solar radiation and precipitation with an important influence from soil properties. Our findings suggest that in addition to climatic factors, initial ground thermal conditions and local-scale topography-soil-driven variability need to be considered in order to realistically assess the impacts of climate change on cold-climate geoecosystems.


Sign in / Sign up

Export Citation Format

Share Document