scholarly journals Effects of body pigmentation mutations on Drosophila melanogaster mating behavior

The model of congenic strains of Drosophila melanogaster was used to investigate the peculiarities of the effect of mutations in yellow (y), ebony (e), and black (b) genes involved in biogenesis of cuticle pigments on imago mating behavior indicators. The aim of this study was to find out if the effect of the given mutations on Drosophila imago mating behavior depends on the general genetic background on which they are realized. To achieve this goal, pairs of congenic strains were constructed using successive saturation crosses followed by selection for the marker phenotype resulted in each of the mutant alleles introduced in homozygous condition into the genotype of either Canton-S or Oregon-R wild-type stock instead of the corresponding wild-type allele present in these stocks initially. Individuals of strains resulted were tested for mating receptivity of females and mating activity of males. Each of the indicators was evaluated as a proportion of sexually mature but virgin individuals of a particular sex copulated successfully within the first hour after placing them in a test chamber with an excess of individuals of the opposite sex. According to the data obtained and the results of their statistical analysis, it was proved that the introduction of a mutation into the genetic background of the wild-type stock is accompanied with a change in the studied characteristics of imago mating behavior. The effect depends on the mutation introduced and on the genotype of the recipient stock. Thus, males of the yC-S strain are characterized by increased mating activity comparatively to males of the wild-type Canton-S stock. These results expand the known effects of yellow mutation. Males of the bC-S and eC-S strains, on the contrary, are less active than the males of the wild-type Canton-S stock. The most pronounced effects on mating receptivity of females were fixed for b (an increase in the indicator when introduced into Oregon genetic background) and e (a decrease when introduced into Canton-S genetic background) mutations. The indicators studied under the conditions of the given experimental scheme change in direct proportion (rS = 0,76; p < 0,05). In other words, if the strain is characterized by high mating activity of males, as a rule, a high mating receptivity of females will be also observed.

Genetics ◽  
1972 ◽  
Vol 70 (4) ◽  
pp. 595-610
Author(s):  
Ray Moree

ABSTRACT The viability effects of chromosomes from an old and from a new laboratory strain of D. melanogaster were studied in eight factorial combinations and at two heterozygosity levels. The combinations were so constructed that heterozygosity level could be varied in the third chromosomes of the carriers of a homozygous lethal marker, in the third chromosomes of their wild-type segregants, and in the genetic backgrounds of both. Excluding the effect of the marker and the exceptional outcomes of two of the combinations, and taking into account both large and small deviations from theoretical expectation, the following summary is given as the simplest consistent explanation of the results: 1) If total heterozygosities of two segregant types tend toward equality their viabilities tend toward equality also, whether background heterozygosity is high or low; if background heterozygosities is higher the tendency toward equality is slightly greater. 2) If total heterozygosity of two segregant types are unequal the less heterozygous type has the lower viability; the difference is more pronounced when background heterozygosity is low, less when it is high. 3) Differences between segregant viabilities are correlated with differences between the total heterozygosities of the two segregants; genetic background is effective to the extent, and only to the extent, that it contributes to the magnitude of this difference. This in turn appears to underlie, at least partly, the expression of a pronounced interchromosomal epistasis. Thus in this study viability is seen to depend upon both the quantity and distribution of heterozygosity, not only among the chromosomes of an individual but among the individuals of a given combination as well.


2017 ◽  
Author(s):  
Chengfeng Xiao ◽  
Shuang Qiu ◽  
R Meldrum Robertson

AbstractWe describe persistent one-way walking of Drosophila melanogaster in a circular arena. Wild-type Canton-S adult flies walked in one direction, counter-clockwise or clockwise, for minutes, whereas white-eyed mutant w1118 changed directions frequently. Locomotion in the circular arena could be classified into four components: counter-clockwise walking, clockwise walking, nondirectional walking and pausing. Genetic analysis revealed that while wild-type genetic background was associated with reduced directional change and reduced numbers of one-way (including counterclockwise and clockwise) and nondirectional walks, the white (w+) locus promoted persistent oneway walking by increasing the maximal duration of one-way episodes. The promoting effect of w+ was further supported by the observations that (1) w+ duplicated to the Y chromosome, (2) four genomic copies of mini-white inserted on the autosomes, and (3) pan-neuronal overexpression of the White protein increased the maximal duration of one-way episodes, and that RNAi knockdown of w+ in the neurons decreased the maximal duration of one-way episodes. These results suggested a pleiotropic function of w+ in promoting persistent one-way walking in the circular arena.


2016 ◽  
Author(s):  
Chengfeng Xiao ◽  
Shuang Qiu ◽  
R Meldrum Robertson

ABSTRACTCharacteristics of male courtship behavior in Drosophila melanogaster have been well-described, but the genetic basis of male-female copulation is largely unknown. Here we show that the white (w) gene, a classical gene for eye color, is associated with copulation success. 82.5% of wild-type Canton-S flies copulated within 60 minutes in circular arenas, whereas few white-eyed mutants mated successfully. The w+ allele exchanged to the X chromosome or duplicated to the Y chromosome in the white-eyed genetic background rescued the defect of copulation success. The w+-associated copulation success was independent of eye color phenotype. Addition of the mini-white (mw+) gene to the white-eyed mutant rescued the defect of copulation success in a manner that was mw+ copy number-dependent. Lastly, male-female sexual experience mimicked the effects of w+/mw+ in improving successful copulation. These data suggest that the w+ gene controls copulation success in Drosophila melanogaster.


1971 ◽  
Vol 17 (2) ◽  
pp. 103-111 ◽  
Author(s):  
Karl H. Ytterborn

SUMMARYIn a population of Drosophila melanogaster started from an inbred wild-type strain the recessive second chromosome lethal studied had shown overdominance which after many generations was lost. In the present study the persistence of this lethal was tested in three series each of five populations. The genetic backgrounds of the different series of populations were obtained from (a) the inbred strain, (b) the above original population after the overdominance had been lost, and (c) a population started from the same inbred strain and where another lethal had shown overdominance which subsequently had been lost. The lethal was overdominant in the (a) background but detrimental to the heterozygous carriers on the other backgrounds. The detrimental effect of the lethal was stronger in the (b) background than in the (c) background. The varying behaviour of the lethal is possibly due to different adapted background genotypes and/or different degrees of heterozygosity of the gene pools.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1339-1347
Author(s):  
Alfred M Handler ◽  
Sheilachu P Gomez

Abstract Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays. Wild-type and mutant strains of Anastrepha suspensa, Bactrocera dorsalis, B. cucurbitae, Ceratitis capitata, and Toxotrypana curvicauda all supported hobo excision or deletion both in the presence and absence of co-injected hobo transposase, indicating a permissive state for hobo mobility and the existence of endogenous systems capable of mobilizing hobo. In several strains hobo helper reduced excision. Excision depended on hobo sequences in the indicator plasmid, though almost all excisions were imprecise and the mobilizing systems appear mechanistically different from hobo. hobe-related sequences were identified in all species except T. curvicauda. Parsimony analysis yielded a subgroup including the B. cucurbitae and C. capitata sequences along with hobo and Hermes, and a separate, more divergent subgroup including the A. suspensa and B. dorsalis sequences. All of the sequences exist as multiple genomic elements, and a deleted form of the B. cucurbitae element exists in B. dorsalis. The hobo-related sequences are probably members of the hAT transposon family with some evolving from distant ancestor elements, while others may have originated from more recent horizontal transfers.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aaron C. Ericsson ◽  
Marcia L. Hart ◽  
Jessica Kwan ◽  
Louise Lanoue ◽  
Lynette R. Bower ◽  
...  

AbstractThe mouse is the most commonly used model species in biomedical research. Just as human physical and mental health are influenced by the commensal gut bacteria, mouse models of disease are influenced by the fecal microbiome (FM). The source of mice represents one of the strongest influences on the FM and can influence the phenotype of disease models. The FM influences behavior in mice leading to the hypothesis that mice of the same genetic background from different vendors, will have different behavioral phenotypes. To test this hypothesis, colonies of CD-1 mice, rederived via embryo transfer into surrogate dams from four different suppliers, were subjected to phenotyping assays assessing behavior and physiological parameters. Significant differences in behavior, growth rate, metabolism, and hematological parameters were observed. Collectively, these findings show the profound influence of supplier-origin FMs on host behavior and physiology in healthy, genetically similar, wild-type mice maintained in identical environments.


Genetics ◽  
1973 ◽  
Vol 73 (3) ◽  
pp. 429-434
Author(s):  
J James Donady ◽  
R L Seecof ◽  
M A Fox

ABSTRACT Drosophila melanogaster embryos that lacked ribosomal DNA were obtained from appropriate crosses. Cells were taken from such embryos before overt differentiation took place and were cultured in vitro. These cells differentiated into neurons and myocytes with the same success as did wild-type controls. Therefore, ribosomal RNA synthesis is not necessary for the differentiation of neurons and myocytes in vitro.


Sign in / Sign up

Export Citation Format

Share Document