scholarly journals Autonomous Neutron Facility for Detecting Fissile Nuclear Materials

The prospect of creating an autonomous neutron facility for the detection of fissile nuclear materials in samples, including those in confined volume, is discussed. It is proposed to obtain a reference field of thermal neutrons on the basis of a polyethylene moderator ball and a portable fast neutrons source, developed at NRC “Accelerator” NSC KIPT based of a continuous electrostatic accelerator of deuterons. The developed source of thermal neutrons is planned to be used to activate small objects and goods in order to identify substances prohibited for movement containing to find 233U, 235U and 239Pu in their composition. The prompt finding of fissile elements will indicate about an attempt to transport them illegally. A more thorough inspection can be carried out using special equipment after the detention of suspicious goods, citizens or vehicles. The possibility of detecting prompt fission neutrons is considered not only in the traditional way using a polyethylene moderator and proportional 3He detector, but also without application of any moderator using oxide or semiconductor scintillators. For detection fissile materials the method based on using the high-energy part of the γ-spectrum of fission fragments (greater than 4900 keV), as well, as the approach applied in the passive non-destructive analysis by the γ-line with Eg = 185.7 keV from 235U, are substantiated. It is shown that the proposed facility for the detection of fissile nuclear materials is able to determine the presence of isotopes 233U, 235U and 239Pu in tested objects and goods with the using non-destructive testing method.

Author(s):  
S. Likharev ◽  
A. Kramarenko ◽  
V. Vybornov

At present time the interest is growing considerably for theoretical and experimental analysis of back-scattered electrons (BSE) energy spectra. It was discovered that a special angle and energy nitration of BSE flow could be used for increasing a spatial resolution of BSE mode, sample topography investigations and for layer-by layer visualizing of a depth structure. In the last case it was shown theoretically that in order to obtain suitable depth resolution it is necessary to select a part of BSE flow with the directions of velocities close to inverse to the primary beam and energies within a small window in the high-energy part of the whole spectrum.A wide range of such devices has been developed earlier, but all of them have considerable demerit: they can hardly be used with a standard SEM due to the necessity of sufficient SEM modifications like installation of large accessories in or out SEM chamber, mounting of specialized detector systems, input wires for high voltage supply, screening a primary beam from additional electromagnetic field, etc. In this report we present a new scheme of a compact BSE energy analyzer that is free of imperfections mentioned above.


2012 ◽  
Vol 190-191 ◽  
pp. 1144-1147
Author(s):  
Sheng Yun Wan ◽  
Dong Lei Lu ◽  
Shi Yuan Liu ◽  
Wen Xian Zhang ◽  
Xiao Kang Zheng ◽  
...  

As the several speeds up of railway, the operated speed is more than 300km/h, and it is a serious challenge to the safe. So, bring in the high energy radiographic testing is significative. It introduces the NDT method in railway industry, and the advantage of high energy radiographic testing, and introduces several testing results of high energy radiographic testing in swing set, shows the testing is a good method to the Non-destructive testing.


1970 ◽  
Vol 10 (04) ◽  
pp. 365-379 ◽  
Author(s):  
J.S. Wahl ◽  
W.B. Nelligan ◽  
A.H. Frentrop ◽  
C.W. Johnstone ◽  
R.J. Schwartz

Abstract Thermal Neutron Decay Time (TDT) logging tools in 3-3/8 and 1-11/16-in. diameters have been developed for detection and evaluation of water saturation in cased holes. These tools utilize a system of movable and expandable detection time-gates which are automatically adjusted as the log is being run. The two principal detection gates are positioned in time after the neutron burst according to an optimization criterion. An additional gate, delayed until most of the decay has taken place, permits correction for background. This place, permits correction for background. This Scale Factor gating method provides, in each bed, a thermal-decay-time measurement of maximum statistical precision consistent with removal of borehole effects present in the early part of the decay period Increased reliability is afforded by use of digital techniques. Thermal neutron decay time tools employ capture-gamma-ray detection. This choice was based on an extensive series of experiments made to compare gamma-ray detection and direct detection of thermal neutrons. Measurements of thermal neutron decay time constant are affected by local changes in neutron density in the vicinity of the sonde, caused by flow of neutrons by diffusion from one medium to another. The measured decay time constant (T meas) of neutron density at any point may differ, therefore, from the intrinsic decay time constant (T int) produced by absorption alone. The basic physics of neutron diffusion and absorption is reviewed. When the borehole and the formation have different decay time constants and diffusion coefficients, diffusion couples the two regions. Consideration of such effects sheds light on the conditions required for reduction of borehole effects on measured values of the decay time constant. The choice of source-detector spacing is affected. and, for accurate quantitative interpretation, departure curves are required. Departure curves are presented showing the effects of varying cement thickness, casing diameter. and casing fluids Illustrative log examples are shown. Introduction The Thermal Neutron Decay Time (TDT) log provides a determination of the time constant for provides a determination of the time constant for the decay of thermal neutrons in the formation. Hence, it reflects primarily the neutron absorptive properties of the formation. These properties are properties of the formation. These properties are useful in formation evaluation. The most important area of application is in logging cased hole. Because chlorine is by far the strongest thermal neutron absorber of the common earth elements, the TDT log responds largely to the amount of NaCl present in the formation water. As a result, this present in the formation water. As a result, this log resembles the usual open-hole resistivity logs and is easily correlatable with them. When information on lithology and porosity is known or is provided by open-hole logs, a log of neutron provided by open-hole logs, a log of neutron absorption properties permits the solution of a wide variety of problems: saturation determination, oil-water contact location, detection of gas behind casing, etc. Measurements of the thermal neutron decay time constant are made by first irradiating the formation with a pulse of high-energy neutrons from a neutron generator in the sonde, and then, a short time after the neutron source is turned off, determining the rate at which the thermal neutron population decreases. After each neutron burst, the high-energy neutrons are quickly slowed down to thermal velocities by successive collisions with the nuclei of elements in the formation and borehole. The relative number of thermal neutrons remaining in the formation is measured during detection intervals which follow each burst. Between each burst and the beginning of the first detection interval is a delay time which permits the originally fast neutrons to reach thermal permits the originally fast neutrons to reach thermal energy and allows "early" borehole effects to subside. SPEJ p. 365


2005 ◽  
Vol 878 ◽  
Author(s):  
J. Mass ◽  
M. Avella ◽  
J. Jiménez ◽  
M. Callahan ◽  
E. Grant ◽  
...  

AbstractLarge hydrothermal ZnO crystals were grown using 3N NaOH, 1N KOH and 0.5N Li2CO3mineralizer. The crystals were studied by cathodoluminescence (CL), showing a good crystalline quality. Different growth regions were identified by CL imaging. These regions were characterized by their corresponding luminescence spectra, showing that the incorporation of impurities and non radiative recombination centers depend on the growth sector. The surface is shown to introduce band tailing modifying the high energy part of the spectrum. The main spectral signatures of each sector are discussed.


1948 ◽  
Vol 74 (1) ◽  
pp. 102-103 ◽  
Author(s):  
S. Franchetti ◽  
M. Giovanozzi

2011 ◽  
Vol 291-294 ◽  
pp. 1307-1310 ◽  
Author(s):  
Cui Qin Wu ◽  
Wei Ping Wang ◽  
Qi Gang Yuan ◽  
Yan Jun Li ◽  
Wei Zhang ◽  
...  

To detect the delamination, disbond,inclusion defects of the glass fiber composite materials applied in the solid rocket motor, active infrared thermographic non-destructive testing(NDT) is researched. The samples including known defects are heated by pulsed high energy flash lamp. The surface temperature of the samples is monitored by infrared thermography camera. The results of the experiments show that the active infrared thermography technique is a fast and effective inspection method for detecting the defects of delamination, disbond,inclusion of the composites. The samples are also detected by underwater ultrasonic c-scans. The paper concludes that the active infrared thermography NDT is more suitable to rapidly detect the defect in large-area and the underwater ultrasonic c-scans is more suitable to quantitatively identify the defect in local-area.


2020 ◽  
Vol 128 (9) ◽  
pp. 1264
Author(s):  
К.Н. Болдырев ◽  
Д.Д. Гуценко ◽  
С.А. Климин ◽  
Н.Н. Новикова ◽  
Б.Н. Маврин ◽  
...  

Low-temperature infrared luminescence and high-resolution absorption spectra of undoped high-quality SiC single crystals of hexagonal modifications 4H and 6H were investigated. Narrow lines with widths less than 0.2 cm^(-1) were detected, several of which were observed for the first time. It was found that some of the lines in the 4H and 6H modifications have a similar structure, however, the lines in SiC-4H are shifted to the high-energy part of the spectrum by ~ 180 cm^(-1). For the most intense quartet in the region of 1.3 μm, the energy scheme of the levels for both 4H and 6H modifications were constructed.


Sign in / Sign up

Export Citation Format

Share Document