scholarly journals Shorter sprints elicit greater cardiorespiratory and mechanical responses with less fatigue during time-matched sprint interval training (SIT) sessions

Kinesiology ◽  
2018 ◽  
Vol 50 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Stefano Benítez-Flores ◽  
Arilson F.M. de Sousa ◽  
Erick Carlos da Cunha Totó ◽  
Thiago Santos Rosa ◽  
Sebastián Del Rosso ◽  
...  

The aim of this study was to compare the physiological, mechanical and perceptual responses to two sprint interval training (SIT) sessions with very short vs. long sprints, and to verify if those differences could be reflected in measures of acute fatigue. Eleven physically active men performed, after the maximum oxygen consumption (VO2max) determination, SIT5s (16×5s with 24s of recovery) and SIT20s (4×20s with 120s of recovery) in random order on a cycle ergometer. Physiological, mechanical, and perceptual responses were evaluated during and after the sessions. The countermovement jump (CMJ) height and autonomic control of heart rate (HR) were evaluated before and after the sessions. Diet was also controlled through recall questionnaires. During the training, SIT5s exhibited greater HR, VO2, power output, and total work (TW) (p<.05). In contrast, respiratory exchange ratio (RER), rate of fatigue (RF), and blood lactate (BLa) % accumulation were greater in SIT20s (p<.05). The OMNI-cycle Scale Rating of Perceived Exertion (OMNIcycle scale) and Feeling Scale (FS) scores were similar during both protocols (p>.05). A faster HR recovery (HRR) and a higher CMJ height were observed after the SIT5s (p<.05). However, HR variability (HRV) was similarly depressed after both protocols (p>.05). Some correlations between the mechanical and physiological responses were revealed only in the SIT5s. SIT5s was demonstrated to be more efficient as exhibited by greater mechanical responses associated with a higher aerobic activity, when compared to the volume-matched SIT protocol of longer sprints. Simple monitoring tools such as HRR and CMJ could help practitioners to detect differences in acute fatigue after different SIT sessions.

2018 ◽  
Vol 125 (2) ◽  
pp. 329-350 ◽  
Author(s):  
Lucio Follador ◽  
Ragami C. Alves ◽  
Sandro dos S. Ferreira ◽  
Cosme F. Buzzachera ◽  
Vinicius F. dos S. Andrade ◽  
...  

This study examined the extent to which different high-intensity interval training (HIIT) and sprint interval training (SIT) protocols could influence psychophysiological responses in moderately active young men. Fourteen participants completed, in a randomized order, three cycling protocols (SIT: 4 × 30-second all-out sprints; Tabata: 7 × 20 seconds at 170% ⋮O2max; and HIIT: 10 × 60 seconds at 90% HRmax) and three running HIIT protocols (4 × 4 minutes at 90%–95% HRmax, 5 × at v⋮O2max, and 4 × 1,000 meters at a rating of perceived exertion (RPE) of 8, from the OMNI-Walk/Run scale). Oxygen uptake (⋮O2), heart rate, and RPE were recorded during each interval. Affective responses were assessed before and after each trial. The Tabata protocol elicited the highest ⋮O2 and RPE responses, and the least pleasant session-affect among the cycling trials. The v⋮O2max elicited the highest ⋮O2 and RPE responses and the lowest mean session-affect among the running trials. Findings highlight the limited application of SIT and some HIIT protocols to individuals with low fitness levels.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ibrahim Ouergui ◽  
Emerson Franchini ◽  
Hamdi Messaoudi ◽  
Hamdi Chtourou ◽  
Anissa Bouassida ◽  
...  

This study investigated the effect of area sizes (4 × 4, 6 × 6, and 8 × 8 m) and effort-pause ratios (free combat vs. 1:2) variation on the physiological and perceptive responses during taekwondo combats (Study 1). In a second study, the effects on physical performance of 8 weeks of small combat-based training added to regular taekwondo training were investigated (Study 2). In random order, 32 male taekwondo athletes performed six (i.e., two effort-to-pause ratios × three area sizes conditions) different 2-min taekwondo combats (Study 1). Thereafter (Study 2), they were randomly assigned to three experimental groups (4 × 4, 6 × 6, and 8 × 8 m) and an active control group (CG). Regarding Study 1, blood lactate concentration [La] before and after each combat, mean heart rate (HRmean) during each combat, and rating of perceived exertion (CR-10) immediately after each combat were assessed. Regarding Study 2, progressive specific taekwondo (PSTT) to estimate maximum oxygen consumption (VO2max), taekwondo-specific agility, and countermovement jump (CMJ) tests were administered before and after 8 weeks of training. Study 1 results showed that 4 × 4 m elicited lower HRmean values compared with 6 × 6 m (d = −0.42 [small], p = 0.030) and free combat induced higher values compared with the 1:2 ratio (d = 1.71 [large], p < 0.001). For [La]post, 4 × 4 m area size induced higher values than 6 × 6 m (d = 0.99 [moderate], p < 0.001) and 8 × 8 m (d = 0.89 [moderate], p < 0.001) and free combat induced higher values than 1:2 ratio (d = 0.69 [moderate], p < 0.001). Higher CR-10 scores were registered after free combat compared with 1:2 ratio (d = 0.44 [small], p = 0.007). For Study 2, VO2max increased after training [F(1, 56) =30.532, p < 0.001; post-hoc: d = 1.27 [large], p < 0.001] with higher values for 4 × 4 m compared with CG (d = 1.15 [moderate], p = 0.009). Agility performance improved after training [F(1, 56) = 4.419, p = 0.04; post-hoc: d = −0.46 [small], p = 0.04] and 4 × 4 m induced lower values in comparison with 6 × 6 m (d = −1.56 [large], p = 0.001) and CG (d = −0.77 [moderate], p = 0.049). No training type influenced CMJ performance. Smaller area size elicited contrasting results in terms of metabolic demand compared with larger sizes (i.e., lower HRmean but higher [La] and CR-10), whereas free combat induced variables' consistently higher values compared with imposed 1:2 ratio (Study 1). Taekwondo training is effective to improve VO2max and agility (Study 2), but small combat training modality should be investigated further.


2017 ◽  
Vol 39 (01) ◽  
pp. 67-72 ◽  
Author(s):  
Joshua Denham ◽  
Adrian Gray ◽  
John Scott-Hamilton ◽  
Amanda Hagstrom

AbstractSmall non-coding RNAs, such as microRNAs (miRNAs), have emerged as powerful post-transcriptional regulators of gene expression that play important roles in many developmental and biological processes. In this study, we assessed the abundance of circulating microRNAs important for skeletal muscle and heart adaptations to exercise (miR-1, miR-133a, miR-133b and miR-486), following acute exercise and short-term sprint interval training (SIT). Twenty-eight individuals completed four all-out efforts on a cycle ergometer, and donated blood before and 30 min after the cessation of exercise. A subset of 10 untrained men completed 4-6 efforts of SIT, three times a week for 6 weeks, and donated resting blood samples before and after the intervention. MiRNA TaqMan qPCR was performed and whilst no changes were observed after a single session of SIT (all p>0.05), the 6-wk SIT intervention significantly reduced the whole blood content of all four miRNAs (mean fold-changes: 0.37–0.48, all p<0.01). Our data suggests that circulating miRNAs are responsive to short-term SIT and could have roles in SIT-induced health and performance adaptations. Further work is required to establish whether circulating miRNAs could serve as biomarkers for predicting exercise training responses and monitoring exercise interventions.


Author(s):  
Kobe M. Vermeire ◽  
Freek Van de Casteele ◽  
Maxim Gosseries ◽  
Jan G. Bourgois ◽  
Michael Ghijs ◽  
...  

Purpose: Numerous methods exist to quantify training load (TL). However, the relationship with performance is not fully understood. Therefore the purpose of this study was to investigate the influence of the existing TL quantification methods on performance modeling and the outcome parameters of the fitness-fatigue model. Methods: During a period of 8 weeks, 9 subjects performed 3 interval training sessions per week. Performance was monitored weekly by means of a 3-km time trial on a cycle ergometer. After this training period, subjects stopped training for 3 weeks but still performed a weekly time trial. For all training sessions, Banister training impulse (TRIMP), Lucia TRIMP, Edwards TRIMP, training stress score, and session rating of perceived exertion were calculated. The fitness-fatigue model was fitted for all subjects and for all TL methods. Results: The error in relating TL to performance was similar for all methods (Banister TRIMP: 618 [422], Lucia TRIMP: 625 [436], Edwards TRIMP: 643 [465], training stress score: 639 [448], session rating of perceived exertion: 558 [395], and kilojoules: 596 [505]). However, the TL methods evolved differently over time, which was reflected in the differences between the methods in the calculation of the day before performance on which training has the biggest positive influence (range of 19.6 d). Conclusions: The authors concluded that TL methods cannot be used interchangeably because they evolve differently.


2014 ◽  
Vol 114 (3) ◽  
pp. 854-865 ◽  
Author(s):  
Marcus W. Kilpatrick ◽  
Samuel J. Greeley

The purpose of this study was to assess the effect of sprint interval training on rating of perceived exertion. 20 healthy participants (11 men, 9 women; M age = 23 yr.) completed a maximal cycle ergometer test and two high-intensity interval training cycling sessions. Each session utilized the same work-to-rest ratio (1:1), work intensity (90% max), recovery intensity (10% work intensity), and session duration (16 min.). Trials differed on duration of the interval segment, with a 30-sec. trial and a 60-sec. trial. Sessions required the same amount of total work over the duration of the trial. Rating of perceived exertion assessed before, during, and after exercise were higher for the 60-sec. trial than the 30-sec. trial despite no difference in total work. High intensity interval training trials utilizing the same total external work but differing in interval length produced different ratings of perceived exertion. Perceived exertion is significantly higher for sessions of exercise that utilize longer work intervals. These findings suggest that shorter intervals may produce more favorable exertional responses that could positively affect future behavior.


2021 ◽  
pp. 1-6
Author(s):  
Hélcio Kanegusuku ◽  
Marilia de Almeida Correia ◽  
Paulo Longano ◽  
Erika Okamoto ◽  
Maria Elisa Pimentel Piemonte ◽  
...  

BACKGROUND: Exercise with self-selected intensity (SSI) has emerged as a new strategy for exercise prescription aiming to increase exercise adherence in Parkinson’s disease (PD). OBJECTIVE: We compared the cardiovascular, perceived exertion and affective responses during traditional aerobic exercise and with SSI in PD. METHODS: Twenty patients with PD performed two aerobic exercise sessions in random order with an interval of at least 72 h between them: Traditional session (cycle ergometer, 25 min, 50 rpm) with imposed intensity (II) (60–80% maximum heart rate [HR]) and SSI: (cycle ergometer, 25 min, 50 rpm) with SSI. The HR (Polar V800 monitor), systolic blood pressure (auscultatory method), rating of perceived exertion (Borg scale 6–20) and affective responses (feeling scale) were assessed during the exercise at 8th and 18th minute. The Generalized Estimating Equation Model was used for comparison between both sessions (P <  0.05). RESULTS: The exercise intensity was not significantly different between both exercise sessions (8th minute: II –76.3±1.0 vs. SSI –76.5±1.3 % of maximal HR; 18th minute: II –78.9±0.9 vs. SSI –79.1±1.3 % of maximal HR, p = 0.93). Blood pressure, perceived exertion and affective responses were also not significantly different between both sessions (P >  0.05). CONCLUSIONS: Cardiovascular and psychophysiological responses were not different during aerobic exercise performed with II and with SSI in patients with PD.


2016 ◽  
Vol 11 (8) ◽  
pp. 1088-1093 ◽  
Author(s):  
Joshua Christen ◽  
Carl Foster ◽  
John P. Porcari ◽  
Richard P. Mikat

Purpose:The session rating of perceived exertion (sRPE) has gained popularity as a “user friendly” method for evaluating internal training load. sRPE has historically been obtained 30 min after exercise. This study evaluated the effect of postexercise measurement time on sRPE after steady-state and interval cycle exercise. Methods:Well-trained subjects (N = 15) (maximal oxygen consumption = 51 ± 4 and 36 ± 4 mL/kg [cycle ergometer] for men and women, respectively) completed counterbalanced 30-minute steady-state and interval training bouts. The steady-state ride was at 90% of ventilatory threshold. The work-to-rest ratio of the interval rides was 1:1, and the interval segment durations were 1, 2, and 3 min. The high-intensity component of each interval bout was 75% peak power output, which was accepted as a surrogate of the respiratory compensation threshold, critical power, or maximal lactate steady state. Heart rate, blood lactate, and rating of perceived exertion (RPE) were measured. The sRPE (category ratio scale) was measured at 5, 10, 15, 20, 25, 30, and 60 min and 24 h after each ride using a visual analog scale (VAS) to prevent bias associated with specific RPE verbal anchors. Results:sRPE at 30 min postexercise followed a similar trend: steady state = 3.7, 1 min = 3.9, 2 min = 4.7, 3 min = 6.2. No significant differences (P > .05) in sRPE were found based on postexercise sampling times, from 5 min to 24 h postexercise. Conclusions:Postexercise time does not appear to have a significant effect on sRPE after either steady-state or interval exercise. Thus, sRPE appears to be temporally robust and is not necessarily limited to the 30-min-postexercise window historically used with this technique, although the presence or absence of a cooldown period after the exercise bout may be important.


Author(s):  
Cristiano Dall’ Agnol ◽  
Tiago Turnes ◽  
Ricardo Dantas De Lucas

Purpose: Cyclists may increase exercise intensity by prolonging exercise duration and/or shortening the recovery period during self-paced interval training, which could impact the time spent near . Thus, the main objective of this study was to compare the time spent near during 4 different self-paced interval training sessions. Methods: After an incremental test, 11 cyclists (mean [SD]: age = 34.4 [6.2] y; ) performed in a randomized order 4 self-paced interval training sessions characterized by a work–recovery ratio of 4:1 or 2:1. Sessions comprised 4 repetitions of 4 minutes of cycling with 1 minute (4/1) or 2 minutes (4/2) of active recovery or 8 minutes of cycling with 2 minutes (8/2) or 4 minutes (8/4) of active recovery. Time spent at 90% to 94% (), ≥95% (), and 90% to 100% () was analyzed in absolute terms and relative to the total work duration. Power output, heart rate, blood lactate, and rating of perceived exertion were compared. Results: The 8/4 session provided higher absolute and than 8/2 (P = .015 and .029) and 4/1 (P = .002 and .047). The 4/2 protocol elicited higher relative (47.7% [26.9%]) and (23.5% [22.7%]) than 4/1 (P = .015 and .028) and 8/2 (P < .01). Session 4/2 (275 [23] W) elicited greater mean power output (P < .01) than 4/1 (261 [27] W), 8/4 (250 [25] W), and 8/2 (234 [23] W). Conclusions: Self-paced interval training composed of 4-minute and 8-minute work periods efficiently elicit , but protocols with a work–recovery ratio of 2:1 (ie, 4/2 and 8/4) could be prioritized to maximize .


2004 ◽  
Vol 132 (11-12) ◽  
pp. 409-413 ◽  
Author(s):  
Stanimir Stojiljkovic ◽  
Dejan Nesic ◽  
Sanja Mazic ◽  
Dejana Popovic ◽  
Dusan Mitrovic ◽  
...  

The objective of the study was to test the possibility of using the fixed value (12-13) of the Rating of Perceived scale (RPE scale), as a valid method for determination of ventilatory threshold (VT). The sample of the subjects included 32 physically active males (age: 22.3; TV: 180.5; TM: 75.5 kg; V02max: 57.1 mL/kg/min). During the continuous test of progressively increasing load on a treadmill, cardiorespiratory and other parameters were monitored using ECG and gas analyzer. Following the test, VT and V02max were determined. During the test, at each level, at the scale from 6 to 20, the subjects pointed the number that suited best their currently feeling of strain. The RPE threshold was defined as constant value of 12-13. Average values of ventilatory and RPE threshold were expressed by parameters that were monitored and then compared by using t-test for dependent samples. No significant difference was found between mean values of VT and RPE threshold, when they were expressed by relevant parameters: speed, load, heart rate, absolute and relative oxygen consumption. Fixed value (12-13) of RPE scale may be used to detect the exercise intensity that corresponds to ventilatory threshold.


Author(s):  
Sigbjørn Litleskare ◽  
Eystein Enoksen ◽  
Marit Sandvei ◽  
Line Støen ◽  
Trine Stensrud ◽  
...  

The purpose of the present study was to investigate training-specific adaptations to eight weeks of moderate intensity continuous training (CT) and sprint interval training (SIT). Young healthy subjects (n = 25; 9 males and 16 females) performed either continuous training (30–60 min, 70–80% peak heart rate) or sprint interval training (5–10 near maximal 30 s sprints, 3 min recovery) three times per week for eight weeks. Maximal oxygen consumption, 20 m shuttle run test and 5·60 m sprint test were performed before and after the intervention. Furthermore, heart rate, oxygen pulse, respiratory exchange ratio, lactate and running economy were assessed at five submaximal intensities, before and after the training interventions. Maximal oxygen uptake increased after CT (before: 47.9 ± 1.5; after: 49.7 ± 1.5 mL·kg−1·min−1, p < 0.05) and SIT (before: 50.5 ± 1.6; after: 53.3 ± 1.5 mL·kg−1·min−1, p < 0.01), with no statistically significant differences between groups. Both groups increased 20 m shuttle run performance and 60 m sprint performance, but SIT performed better than CT at the 4th and 5th 60 m sprint after the intervention (p < 0.05). At submaximal intensities, CT, but not SIT, reduced heart rate (p < 0.05), whereas lactate decreased in both groups. In conclusion, both groups demonstrated similar improvements of several performance measures including VO2max, but sprint performance was better after SIT, and CT caused training-specific adaptations at submaximal intensities.


Sign in / Sign up

Export Citation Format

Share Document