scholarly journals An overview of the guideline from the British Society of Echocardiography 2020: what’s new?

Author(s):  
T.M. Babkina ◽  
G.S. Smyrnova ◽  
O.V. Polishchuk ◽  
L.Yu. Hladka

Quantitative assessment of cavities and heart function is the most common task of echocardiography (EchoCG). It is difficult to overestimate the importance of standardizing EchoCG measurements, because their results influence clinical decisions. In January 2015, the American Society of Echocardiography and the European Association of Cardiovascular Imaging, published an update Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults. Since then, the results of new research using obtained prospective data, on the basis of which in February 2020 the British Society of Echocardiography (BSE) released a new guide. The authors of the recommendations set the goal of creating a simple, practical reference document and guide for everyday use that encourage the holistic interpretation of measurements (no single number should define normality or pathology). Based on these data, we considered the rational component of the updated recommendations, focused on important conceptual changes in the assessment of heart structure and function, provided new terminology for left ventricular function and left atrial size, and a new approach in assessing aortic root, right heart and left atrium. The BSE recommends obtain left ventricular dimensions from the parasternal long-axis window preferentially using 2D imaging. Aortic dimensions should be obtained using the “inner-edge to inner-edge” technique in end-diastole. The BSE suggests that for those Echocg labs that currently use the “leading-edge to leading-edge” technique, it is reasonable to continue doing so for continuity and consistency.

2020 ◽  
Vol 7 (1) ◽  
pp. G1-G18 ◽  
Author(s):  
Allan Harkness ◽  
Liam Ring ◽  
Daniel X Augustine ◽  
David Oxborough ◽  
Shaun Robinson ◽  
...  

This guideline presents reference limits for use in echocardiographic practice, updating previous guidance from the British Society of Echocardiography. The rationale for change is discussed, in addition to how the reference intervals were defined and the current limitations to their use. The importance of interpretation of echocardiographic parameters within the clinical context is explored, as is grading of abnormality. Each of the following echo parameters are discussed and updated in turn: left ventricular linear dimensions and LV mass; left ventricular volumes; left ventricular ejection fraction; left atrial size; right heart parameters; aortic dimensions; and tissue Doppler imaging. There are several important conceptual changes to the assessment of the heart’s structure and function within this guideline. New terminology for left ventricular function and left atrial size are introduced. The British Society of Echocardiography has advocated a new approach to the assessment of the aortic root, the right heart, and clarified the optimal methodology for assessment of LA size. The British Society of Echocardiography has emphasized a preference to use, where feasible, indexed measures over absolute values for any chamber size.


2021 ◽  
Vol 11 (01) ◽  
pp. e120-e124
Author(s):  
Duaa M. Raafat ◽  
Osama M. EL-Asheer ◽  
Amal A. Mahmoud ◽  
Manal M. Darwish ◽  
Naglaa S. Osman

AbstractDilated cardiomyopathy (DCM) is the third leading cause of heart failure in pediatrics. The exact etiology of DCM is unknown in more than half of the cases. Vitamin D receptors are represented in cardiac muscles, endothelium, and smooth muscles of blood vessels suggesting that vitamin D could have a vital cardioprotective function. This study aimed to assess serum level of vitamin D in children with idiopathic DCM and to correlate the serum level of vitamin D with the left ventricular dimensions and function. This study is a descriptive cross-sectional single-center study, includes 44 children of both sexes, diagnosed as idiopathic DCM. Serum level of vitamin D was assessed and correlated with the left ventricular dimensions and function. Mean age of studied children was 6.08 ± 4.4 years. Vitamin D deficiency was found in 90.9% of children with idiopathic DCM with a mean level 13.48 ng/mL. There was a negative correlation between vitamin D level and fraction shortening and left ventricular end-diastolic diameter in children with DCM. Vitamin D level is not only significantly low in children with idiopathic DCM but it is also significantly correlated with the degree of left ventricular dysfunction.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Aline M De Souza ◽  
Jonathas Almeida ◽  
Nataliia Shults ◽  
Hong Ji ◽  
Kathryn Sandberg

Severe caloric restriction (sCR) increases the risk for acute cardiovascular disease. Less understood are the long-term effects on cardiovascular disease risk after the sCR period has ended. We investigated the effects of sCR on heart structure and function months after refeeding (sCR-Refed). Female Fischer rats (3-months-old) were maintained on (CT) ad libitum or a 60% caloric restricted diet for 2 weeks. Thereafter, all rats received ad libitum chow for 3 months and they were analyzed by precision ultrasound to assess their heart function. After imaging, the animals were sacrificed and the hearts were subjected to ischemia-reperfusion (I/R) using a Langendorff preparation. After 2 weeks of sCR, rats lost 15% of their initial body weight (BW) [% (100*(Final-Initial/Initial)): CT, 1.5±0.8 vs sCR, -15.4±1.1; p<0.001;n=8]. After 3 months of refeeding, there was no detectable difference in BW between CT and sFR-Refed groups. Isolated hearts from the sCR-Refed rats exhibited worse myocardial pathology after I/R compared to CT rats. The parallel orientation of myofibers and striations normally present in cardiomyocytes was lost in sCR-Refed rats. Further analysis revealed uneven blood-filling of the microcirculatory vessels and prominent interstitial edema of the myocardium. Hearts from sCR-Refed rats had more atrophied cardiomyocytes than CT [Atrophied/Total (%): CT, 0.2±0.1 vs sCR-Refed, 50.6±1.1; p<0.001; n=5]. The number of arrhythmic events during a 30 min ischemic interval in isolated hearts doubled after 2 weeks on the sCR diet ( data not shown ) and remained doubled 3 months later [Arrhythmias (% of time): CT, 34±8 vs sCR-Refed, 68±9; p=0.02; n=8]. Ultrasound imaging showed no difference in stroke volume, coronary perfusion pressure and left ventricular mass. However, the thickness of the left ventricular posterior wall was significantly reduced in sCR-Refed rats [(mm): CT, 2.55 ±0.03 vs sCR-Refed, 2.10±0.04; p=0.002; n=4]. These findings indicate heart structure and function remained damaged months after the sCR period ended and BW was restored. These studies have adverse cardiovascular risk implications for who are subjected either voluntarily (crash diets) or involuntarily (very low food security) to periods of inadequate caloric intake.


2018 ◽  
Vol 9 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Jiahui Li ◽  
Aili Li ◽  
Jiali Wang ◽  
Yu Zhang ◽  
Ying Zhou

Purpose: Cardiac valve calcification (VC) is very common in patients on hemodialysis. However, the definite effect of VC on left ventricular (LV) geometry and function in this population is unknown, especially when LV ejection fraction (LVEF) is normal. The aim of this study was to determine the effect of VC on LV geometry and function in long-term hemodialysis patients by conventional echocardiography and two-dimensional speckle tracking echocardiography (2D-STE). Methods: A total of 47 hemodialysis patients (2–3 times weekly for 5 years or more) were enrolled in this study. Cardiac VC was defined as bright echoes of more than 1 mm on one or more cusps of the aortic valve or mitral valve or mitral annulus using echocardiography as the screening method. LV longitudinal global strain (GLS) was assessed on the apical four-chamber view and calculated as the mean strain of 6 segments. LV global circumferential strain was acquired on the LV short axis view at the level of papillary muscles. Results: Twenty-five patients with VC had higher mean values of interventricular septum thickness, LV posterior wall thickness, LV mass index, relative wall thickness, and LV mass/end-diastolic volume than 22 patients without VC (p < 0.05, respectively), indicating more obvious LV hypertrophy (LVH). VC patients had higher mitral annular E/E′ values, especially at the septal side representing increased LV filling pressure compatible with diastolic dysfunction, while only the E/E′ ratio of the septal side was significantly different between the 2 groups (16.7 ± 4.1 vs. 12.3 ± 4.4, p < 0.01). When assessed by GLS, LV longitudinal systolic function was also lower in in patients with VC compared with those without VC (–0.18 ± 0.03 vs. –0.25 ± 0.04; p < 0.01). Conclusions: Cardiac VC diagnosed by echocardiography when it occurs in long-term hemodialysis patients may indicate more severe LVH, myocardial damage, and worse heart function in comparison to those without VC. Tissue Doppler imaging and 2D-STE can detect the subtle change of heart function in this population in the early stage of LV dysfunction when LVEF is normal.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Chad K Nicholson ◽  
Bridgette F Moody ◽  
Rebecca L Hood ◽  
Junichi Sadoshima ◽  
John W Calvert

Background: Numerous studies have reported the cytoprotective effects of hydrogen sulfide (H2S) in various models of myocardial injury. Here we examined the role that thioredoxin-1 (Trx1) plays in mediating the protective effects of H2S in a model of heart failure. Methods and Results: Mice were subjected to 60 min of left coronary artery ischemia followed by 4 wks of reperfusion (R) at which time left ventricular dimensions and function were assessed. Mice received saline (Veh) or H2S in the form of sodium sulfide (Na2S, 100 μ g/kg) at the time of R followed by daily i.v. injections for the first 7 days of R. Mice treated with Na2S experienced less left ventricular dilatation and hypertrophy, displayed improved left ventricular ejection fraction, and displayed improved contractility and relaxation when compared to Veh-treated mice. Studies aimed at evaluating the underlying cardioprotective mechanisms found that Na2S treatment increased the expression of Trx1. Further analysis revealed that this was accompanied by an increase in phosphorylation of apoptosis signaling kinase-1 (ASK1) at serine residue 966 (inhibitory site), as well as a decrease in the phosphorylation of JNK and p38 (downstream targets of ASK1). We also found that Na2S treatment did not improve cardiac dilatation, cardiac dysfunction, or cardiac hypertrophy in cardiac specific Trx1 dominant negative transgenic (Trx1 dnTg) mice when compared to Veh-treated mice. Conclusion: These findings provide important information that the upregulation of cardiac Trx1 by H2S in the setting of ischemic-induced heart failure sets into motion events, including ASK1 inhibition, which ultimately leads to cardioprotection.


2018 ◽  
Vol 315 (6) ◽  
pp. R1232-R1241 ◽  
Author(s):  
Loren P. Thompson ◽  
Ling Chen ◽  
Brian M. Polster ◽  
Gerard Pinkas ◽  
Hong Song

Adverse intrauterine conditions cause fetal growth restriction and increase the risk of adult cardiovascular disease. We hypothesize that intrauterine hypoxia impairs fetal heart function, is sustained after birth, and manifests as both cardiac and mitochondrial dysfunction in offspring guinea pigs (GPs). Pregnant GPs were exposed to 10.5% O2 (HPX) at 50 days of gestation (full term = 65 days) or normoxia (NMX) for the duration of the pregnancy. Pups were allowed to deliver vaginally and raised in a NMX environment. At 90 days of age, mean arterial pressure (MAP) was measured in anesthetized GPs. NMX and prenatally HPX offspring underwent echocardiographic imaging for in vivo measurement of left ventricular cardiac morphology and function, and O2 consumption rates and complex IV enzyme activity were measured from isolated cardiomyocytes and mitochondria, respectively. Prenatal HPX increased ( P < 0.01) MAP (52.3 ± 1.3 and 58.4 ± 1.1 mmHg in NMX and HPX, respectively) and decreased ( P < 0.05) stroke volume (439.8 ± 54.5 and 289.4 ± 15.8 μl in NMX and HPX, respectively), cardiac output (94.4 ± 11.2 and 67.3 ± 3.8 ml/min in NMX and HPX, respectively), ejection fraction, and fractional shortening in male, but not female, GPs. HPX had no effect on left ventricular wall thickness or end-diastolic volume in either sex. HPX reduced mitochondrial maximal respiration and respiratory reserve capacity and complex IV activity rates in hearts of male, but not female, GPs. Prenatal HPX is a programming stimulus that increases MAP and decreases cardiac and mitochondrial function in male offspring. Sex-related differences in the contractile and mitochondrial responses suggest that female GPs are protected from cardiovascular programming of prenatal HPX.


2011 ◽  
Vol 300 (3) ◽  
pp. H943-H950 ◽  
Author(s):  
Roland Vetter ◽  
Uwe Rehfeld ◽  
Christoph Reissfelder ◽  
Henry Fechner ◽  
Enn Seppet ◽  
...  

The sarco/endoplasmic reticulum (SR) Ca2+-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca2+ reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca2+ handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6- N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/d tmax, and dP/d tmin in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT ( P < 0.05). In parallel, a 1.4-fold higher Vmax value of homogenate SR Ca2+ uptake was observed in hypothyroid TG ( P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by −24% was markedly less than the decrease of −49% in WT ( P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the Vmax values of SR Ca2+ uptake when the respective data of all experimental groups were plotted together ( r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca2+ uptake and in vivo heart function were only partially rescued.


Sign in / Sign up

Export Citation Format

Share Document