scholarly journals Production of N-acetylglucosamine from shrimp shells’ chitin using intracellular chitinase from Mucor circinelloides

Food Research ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 1582-1587
Author(s):  
Yuniwaty Halim ◽  
Fransiska ◽  
Hardoko ◽  
R. Handayani

Chitin is a natural biopolymer found in shrimp shells and can be processed into Nacetylglucosamine which is extensively used as a dietary supplement to treat osteoarthritis, back pain and knee pain. This research was conducted to determine the optimum pH, temperature, substrate concentration and incubation period to produce Nacetylglucosamine using crude and semi pure intracellular chitinase extracted from Mucor circinelloides. Chitinase activity was measured to determine optimum pH and temperature by using various pHs (3, 4, 5, 6, 7, 8 and 9) and temperatures (30oC, 40oC, 50oC, 60oC, 70oC and 80oC). Different substrate concentrations (0.5%, 1.0%, 1.5% and 2.0%) and incubation periods (2, 4, 6 and 24 hrs) were used to determine the optimum condition to produce N-acetylglucosamine. Results showed that crude intracellular chitinase had an optimum pH of 5 with chitinase activity of 4.16±0.07 U/mL and optimum temperature of 60oC with chitinase activity of 4.22±0.07 U/mL. The optimum substrate concentration obtained was 0.5% and the optimum incubation period obtained was 6 hrs with about 961.67±9.13 ppm N-acetylglucosamine produced. Semi pure intracellular chitinase had an optimum pH of 4 with chitinase activity of 4.75±0.09 U/mL and optimum temperature of 50oC with chitinase activity of 5.03±0.08 U/mL. The optimum substrate concentration obtained was 1.5% and the optimum incubation period obtained was 4 hrs with about 1150.56±12.55 ppm N-acetylglucosamine produced.

REAKTOR ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 62-67
Author(s):  
Hardoko Hardoko ◽  
Titri Siratantri Mastuti ◽  
Desy Puspasari ◽  
Yuniwaty Halim

Chitin hydrolysis using enzyme is one of the methods to produce glucosamine in shorter time compared to using microbial cells, but the ability to produce glucosamine at enzyme’s optimum condition is influenced by substrate concentration and fermentation time. The objective of this research was to determine the optimum substrate concentration and fermentation time of shrimp shells’ chitin to produce glucosamine at the optimum pH and temperature of crude intracellular chitinase enzyme from Providencia stuartii. Method used was experimental method, started by extraction of intracellular enzyme from P. stuartii, followed by determination of optimum pH and temperature of enzyme. The optimum condition was used for experiment of shrimp shells’ chitin fermentation with treatments of chitin substrate concentration (0.5; 1.0; 1.5; 2.0%) and fermentation time (2, 4, 6 and 24 hours). Results showed that optimum enzyme activity occurred at pH of 5.0 and temperature of 40oC, which was about 6.03 U/ml. Concentration of chitin substrate and fermentation time influenced the amount of glucosamine obtained. Fermentation of shrimp shells’ chitin using crude intracellular enzyme was optimum at 1.0% substrate concentration and 6 hours fermentation time, which produced glucosamine about 1680.06±58.49 ppm. Keywords: intracellular chitinase enzyme, glucosamine, shrimp shells’ chitin, P. stuartii


1969 ◽  
Vol 46 (2) ◽  
pp. 120-126
Author(s):  
Betty G. García

The crude-protein fraction of green plantains was isolated and found to cause an inversion of sucrose solutions. The rate of inversion of sucrose by the invertase of the green plantain is proportional to the concentration of enzyme. The inversion of sucrose, when catalyzed by green-plantain invertase, appears to follow a first-order reaction rate at low substrate concentrations (below 6 percent). As the concentration of sucrose exceeds 6 percent the rate of the reaction changes to zero order. An optimum pH of 4.15 and an optimum temperature of 44.4° C. were obtained for the activity of green-plantain invertase.


1978 ◽  
Vol 56 (8) ◽  
pp. 784-790 ◽  
Author(s):  
G. G. Poirier ◽  
P. Savard ◽  
D. Rajotte ◽  
J. Morisset ◽  
A. Lord

The isolated nuclei of rat pancreas contain an enzyme system that will incorporate 3H-labeled NAD into an acid-insoluble product, which is shown to be poly(ADP-ribose). The enzyme has an optimum pH of 7.8 and the optimum temperature is between 20 and 30 °C. Optimum Mg2+ concentration is 8 mM and dithiothreitol also stimulates the enzyme at a concentration of 8 mM. Under standard conditions, the Km value for the reaction is 0.25 mM and an inhibition by the substrate is observed at high substrate concentrations. It has also been found that only one basic nuclear protein, that is, histone H1, is modified by the synthetase. An average chain length of 5.0 is found in the nuclei and of 4.5 on histone H1. Radioautographic studies show that poly(ADP-ribose) is closely associated with chromatin.


2020 ◽  
Vol 13 (2) ◽  
pp. 228-241
Author(s):  
Ika Rahmatul Layly ◽  
Erma Widyasti ◽  
Deden Rosid Waltam ◽  
Ayi Mufti ◽  
Nita Wiguna ◽  
...  

AbstrakLipase adalah kelompok enzim yang mengkatalisis hidrolisis rantai panjang trigliserida, lemak, dan minyak menjadi gliserol dan asam lemak dengan adanya air. Sumber lipase untuk industri kebanyakan berasal dari mikroorganisme. Penggunaan lipase pada industri makin meningkat setiap tahunnya meliputi aplikasinya pada industri makanan, pakan, farmasi, pulp, dan kertas, biodiesel, dan industri tekstil. Dalam usaha mendapatkan isolat potensial penghasil lipase untuk hHidrofilisasi serat poliester, pada penelitian ini dilakukan skrining dan isolasi mikroorganisme yang dapat menghasilkan lipase dari limbah pengolahan minyak kelapa sawit di Malinping, Lebak, Banten. Sebanyak 20 isolat bakteri dan 5 isolat jamur yang diperoleh kemudian diuji aktivitas lipasenya menggunakan metode titrasi. Empat isolat bakteri terpilih (Kondensat, Lumpur-Got, Hasil-Buangan, dan Tangki-Crude-Oil) serta lima isolat jamur (Nut-A, Nut-B, Nut-C, Kernel-B, dan Kernel-C) dikarakterisasi pH dan suhu optimum enzimnya. Hasil karakterisasi pH menunjukkan bahwa isolat bakteri Kondensat, Lumpur-Got, Hasil-Buangan, dan Tangki-Crude-Oil mempunyai aktivitas enzim lipase tertinggi pada pH 6. Suhu optimal aktivitas enzim lipase isolat Lumpur-Got-B, Hasil Buangan-B, dan Tangki-Crude-Oil B  pada 40 °°C, sedangkan isolat bakteri-Kondensat-B optimal pada suhu 30 °°C. Aktivitas lipase kelima isolat jamur optimal pada pH 6. Suhu optimal aktivitas lipase isolat jamur Nut-A adalah 40 °°C, sedangkan isolat Nut-B, Nut-C, Kernel-B, dan Kernel-C aktivitasnya optimal pada 50 °°C.Abstract Lipase are enzymes that catalyzed the hydrolysis of triglyceride, fats and oils into glycerol and fatty acids in the presence of water. Industrial Lipase source mostly derived from microbes. Each year, the lipase utilization in industry increased, such as application for foods, feeds, pharmacys, pulp and papers, biodiesel, and textile industries. On this study, a total of 20 bacteria and 5 fungi lipase potential producer were screened and isolated from oil palm processing waste in Malinping, Lebak, Banten, which then tested for its activity using titration method. Selected isolates then were characterized for its enzyme optimum pH and temperature. The optimum pH for isolate Kondensat, Lumpur-Got, Hasil-Buangan and Crude-Oil-Tank lipases are at pH 6, whilst the optimum temperature of isolates Lumpur-Got B, Hasil-Buangan B and Crude-Oil-Tank B were at 40 °°C and bakteri-Kondensat B isolate optimum at 30 °°C. The five fungi characterization shown optimum pH at 6 and 50 °°C except for isolate Nut-A that optimum at 30 °°C.


2020 ◽  
Vol 49 (2) ◽  
pp. 343-348
Author(s):  
Shital Pal ◽  
KS Hossain

Silver nanoparticles (Ag-NPs) by mixing silver nitrate (AgNO3) with cell-free filtrate (CFF) of the two fungal isolates viz., Fusarium 4F1 and Trichoderma TrS were synthesized. pH, substrate concentration and incubation period for the production of better quality and quantity of Ag-NPs was optimized. The Ag-NPs by UV-vis spectroscopy were characterized. Between the two fungal isolates, pH levels, AgNO3 concentrations and incubation periods studied, the highest number of spherical shaped, monodispersed and stable Ag-NPs were recorded from Fusarium 4F1 at pH 9, 2 mM AgNO3 and 72 hrs of incubation.


2012 ◽  
Vol 457-458 ◽  
pp. 472-475
Author(s):  
Jing Xuan Gou ◽  
Wen Bin Dong ◽  
Qiao Zeng ◽  
Lei Jin

Chitin is an abundant biopolymer like cellulose that is rather resistant to degradation. In order to develop a bio-digesting method, soil sample in Qinling Mountain were collected for screening the bacteria with high chitinase activity by method of the transparent circle. The strain D5-23 was isolated and screened out from soil, which was found with amazing chitinase acitivity. The ratio of transient circle and colony circle is no less than 10. The strain was then identified as Aeromonas sp according to the sequences of 16S rDNA and morphological analysis. The enzyme activity was studied further, ,data shows that the optimum temperature was 45°C, which is similar to other Aeromonas sp, wheras the optimum pH is 5 and 9, which is more similar to Vibrio alginolyticus TK-22.


2019 ◽  
Vol 21 (2) ◽  
pp. 105
Author(s):  
Yuniwaty Halim ◽  
Hardoko Hardoko ◽  
Reinald Febryanto Pengalila

This research aimed to determine the best fermentation condition, consists of pH, temperature, fermentation time and substrate concentration, in N-acetylglucosamine production from shrimp shells using crude extracellular chitinase obtained from Mucor circinelloides mould. The method used was experimental method with fermentation treatment of different pH (5, 6, 7, 8 and 9) and temperature (30, 40, 50, 60, 70 and 80°C). The optimal pH and temperature of fermentation obtained was used to determine the maximum substrate concentration (0.5, 1, 1.5 and 2%) and fermentation time (2, 4, 6 and 24 hours) to produce the highest concentration of N-acetylglucosamine. The optimal pH for fermentation was 8, with chitinase activity of 4.38±0.06 U/ml, while the optimal temperature was 50°C with enzyme activity of 5.42±0.06 U/ml. Substrate concentration and fermentation time affected the N-acetylglucosamine production. The optimal fermentation condition was obtained with substrate concentration of 1.5% and fermentation time of 2 hours resulted to N-acetyl Glucosamine concentration of 2195.83±15.14 ppm.


2015 ◽  
Vol 35 (04) ◽  
pp. 422
Author(s):  
Rohula Utami ◽  
Esti Widowati ◽  
Arifah Rahayu

The objective of this research was screening of pectinesterase (PE) producing bacteria which are potential in clarification of keprok garut citrus juice (Citrus nobilis var microcarpa) and characterization of the resulted pectinesterase (optimum pH and temperature, pH and thermal stability, KM and Vmaks). The screening result showed that enzyme of isolates AR2, AR 4, AR 6, and KK 2 was found to be a potential enzyme for clarification of keprok garut citrus juice. Enzyme pektinesterase of isolates AR 2, AR 4, AR 6, and KK 2 had optimum pH at 8; 7.5; 8.5; and 6.5 and stable at pH 4-9, 4-9, 6-9, and 3-8. The optimum temperature enzyme of isolates AR 2 and AR 6 were 55ºC and that of AR 4 and KK 2 were 60ºC. Enzyme of isolate AR 2 was stable at 30-50ºC and inactive at 80ºC, AR 4 and KK 2 were stable at 30-60ºC and inactive at 90ºC whereas AR6 was stable at 30-60ºC and still wasn’t inactive at 90ºC. KM value of isolates AR 2, AR 4, AR 6, and KK 2 were 0.604; 0.338; 0.971; and 0.392 mg/ml. Vmaks value of isolates AR 2, AR 4, AR 6, and KK 2 were 1.218; 0.826; 0.969; and 1.080 u/ml. Pectinesterase enzyme of isolates KK 2 was found to be the most potential enzyme for clarification of keprok garut citrus juice.Keywords: Clarification, enzyme, keprok garut citrus, pectin, pectinesterase ABSTRAKTujuan dari penelitian ini adalah untuk melakukan screening bakteri penghasil enzim pektinesterase (PE) yang berpotensi dalam proses klarifikasi sari buah jeruk keprok garut (Citrus nobilis var microcarpa) serta mengetahui karakteristik enzim pektinesterase yang dihasilkan (pH optimum, suhu optimum, kestabilan pH dan suhu, serta nilai KMdan Vmaks). Hasil screening didapatkan isolat AR 2, AR 4, AR 6, dan KK 2 sebagai isolat penghasil enzim pektinesterase yang berpotensi dalam proses klarifikasi sari buah jeruk keprok garut. Aktivitas enzim pektinesterase isolat AR 2, AR 4, AR 6 dan KK 2 berturut-turut optimum pada pH 8; pH 7,5; pH 8,5; dan pH 6,5, serta stabil pada pH 4-9, pH4-9, pH 6-9, dan pH 3-8. Suhu optimum enzim pektinesterase isolat AR 2, AR 4, AR 6, dan KK 2 berturut-turut adalah 55ºC, 60ºC, 55ºC, dan 60ºC. Enzim pektinesterase isolat AR 2 stabil pada suhu 30-50ºC dan inaktif pada suhu 80ºC, enzim pektinesterase isolat AR 4 dan KK 2 stabil pada suhu 30-60ºC dan inaktif pada suhu 90ºC, sedangkan enzim pektinesterase isolat AR 6 stabil pada suhu 30-60ºC namun belum inaktif pada suhu 90ºC. Nilai konstanta Michaelis-Menten (KM) enzim pektinesterase isolat AR 2, AR 4, AR 6, dan KK 2 berturut-turut adalah 0,604; 0,338; 0,971; dan 0,392 mg/ml. Sedangkan nilai kecepatan maksimum (Vmaks) enzim pektinesterase isolat AR 2, AR 4, AR6, dan KK 2 berturut-turut adalah 1,218; 0,826; 0,969; dan 1,080 U/ml. Enzim pektinesterase isolat KK 2 memiliki karakteristik yang paling sesuai untuk aplikasi dalam klarifikasi sari buah jeruk keprok garut dibandingkan dengan enzim pektinesterase isolat lainnya.Kata kunci: Enzim, klarifikasi, pektin, pektinesterase, jeruk keprok garut


1988 ◽  
Vol 20 (11-12) ◽  
pp. 117-123 ◽  
Author(s):  
D. van der Kooij ◽  
W. A. M. Hijnen

A K.pneumoniae strain, isolated from a water treatment system, was tested in growth measurements for its ability to multiply at substrate concentrations of a few micrograms per liter. The organism multiplied on mixtures of carbohydrates and amino acids at a substrate concentration of 1 µg of C of each compound per liter. Tests with individual compounds revealed that especially carbohydrates were utilized at low concentrations. The Ks values obtained for maltose and maltopentaose were 53 µg of C/l and 114 µg of C per liter, respectively. The significance of the growth of K.pneumoniae at low substrate concentrations is discussed.


1976 ◽  
Vol 22 (7) ◽  
pp. 972-976 ◽  
Author(s):  
H Van Belle

Abstract I studied the kinetics and sensitivity toward inhibition by levamisole and R 8231 of the most important human alkaline phosphatase isoenzymes. N-Ethylaminoethanol proved superior to the now widely used diethanolamine buffer, especially for the enzymes from the intestine and placenta, behaving as an uncompetitive activator. The optimum pH largely depends on the substrate concentration. The addition of Mg2+ has no effect on the activities. The meaning of Km-values for alkaline phosphatases is questioned. Isoenzymes from human liver, bone, kidney, and spleen are strongly inhibited by levamisole or R 8231 at concentrations that barely affect the enzymes from intestine or placenta. The inhibition is stereospecific, uncompetitive, and not changed by Mg2+. Inhibition is counteracted by increasing concentrations of N-ethylaminoethanol. The mechanism of inhibition is suggested to be formation of a complex with the phosphoenzyme.


Sign in / Sign up

Export Citation Format

Share Document