scholarly journals Isolasi Mikroorganisme Potensial Penghasil Lipase dari Limbah Pengolahan Minyak Kelapa Sawit Malinping

2020 ◽  
Vol 13 (2) ◽  
pp. 228-241
Author(s):  
Ika Rahmatul Layly ◽  
Erma Widyasti ◽  
Deden Rosid Waltam ◽  
Ayi Mufti ◽  
Nita Wiguna ◽  
...  

AbstrakLipase adalah kelompok enzim yang mengkatalisis hidrolisis rantai panjang trigliserida, lemak, dan minyak menjadi gliserol dan asam lemak dengan adanya air. Sumber lipase untuk industri kebanyakan berasal dari mikroorganisme. Penggunaan lipase pada industri makin meningkat setiap tahunnya meliputi aplikasinya pada industri makanan, pakan, farmasi, pulp, dan kertas, biodiesel, dan industri tekstil. Dalam usaha mendapatkan isolat potensial penghasil lipase untuk hHidrofilisasi serat poliester, pada penelitian ini dilakukan skrining dan isolasi mikroorganisme yang dapat menghasilkan lipase dari limbah pengolahan minyak kelapa sawit di Malinping, Lebak, Banten. Sebanyak 20 isolat bakteri dan 5 isolat jamur yang diperoleh kemudian diuji aktivitas lipasenya menggunakan metode titrasi. Empat isolat bakteri terpilih (Kondensat, Lumpur-Got, Hasil-Buangan, dan Tangki-Crude-Oil) serta lima isolat jamur (Nut-A, Nut-B, Nut-C, Kernel-B, dan Kernel-C) dikarakterisasi pH dan suhu optimum enzimnya. Hasil karakterisasi pH menunjukkan bahwa isolat bakteri Kondensat, Lumpur-Got, Hasil-Buangan, dan Tangki-Crude-Oil mempunyai aktivitas enzim lipase tertinggi pada pH 6. Suhu optimal aktivitas enzim lipase isolat Lumpur-Got-B, Hasil Buangan-B, dan Tangki-Crude-Oil B  pada 40 °°C, sedangkan isolat bakteri-Kondensat-B optimal pada suhu 30 °°C. Aktivitas lipase kelima isolat jamur optimal pada pH 6. Suhu optimal aktivitas lipase isolat jamur Nut-A adalah 40 °°C, sedangkan isolat Nut-B, Nut-C, Kernel-B, dan Kernel-C aktivitasnya optimal pada 50 °°C.Abstract Lipase are enzymes that catalyzed the hydrolysis of triglyceride, fats and oils into glycerol and fatty acids in the presence of water. Industrial Lipase source mostly derived from microbes. Each year, the lipase utilization in industry increased, such as application for foods, feeds, pharmacys, pulp and papers, biodiesel, and textile industries. On this study, a total of 20 bacteria and 5 fungi lipase potential producer were screened and isolated from oil palm processing waste in Malinping, Lebak, Banten, which then tested for its activity using titration method. Selected isolates then were characterized for its enzyme optimum pH and temperature. The optimum pH for isolate Kondensat, Lumpur-Got, Hasil-Buangan and Crude-Oil-Tank lipases are at pH 6, whilst the optimum temperature of isolates Lumpur-Got B, Hasil-Buangan B and Crude-Oil-Tank B were at 40 °°C and bakteri-Kondensat B isolate optimum at 30 °°C. The five fungi characterization shown optimum pH at 6 and 50 °°C except for isolate Nut-A that optimum at 30 °°C.

1999 ◽  
Vol 30 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Rubens Cruz ◽  
Vinícius D'Arcádia Cruz ◽  
Juliana Gisele Belote ◽  
Marcelo de Oliveira Khenayfes ◽  
Claudia Dorta ◽  
...  

<FONT FACE="Symbol">b</font>-Galactosidase or <FONT FACE="Symbol">b</font>-D-galactoside-galactohydrolase (EC. 3.2.1.23) is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for the synthesis of transgalactosylated oligosaccharides (TOS) that act as functional foods, with several beneficial effects on consumers. Penicillium simplicissimum, a strain isolated from soil, when grown in semi-solid medium showed good productivity of <FONT FACE="Symbol">b</font>-galactosidase with galactosyltransferase activity. The optimum pH for hydrolysis was in the 4.04.6 range and the optimum pH for galactosyltransferase activity was in the 6.07.0 range. The optimum temperature for hydrolysis and transferase activity was 55-60°C and 50°C, respectively, and the enzyme showed high thermostability for the hydrolytic activity. The enzyme showed a potential for several industrial applications such as removal of 67% of the lactose from milk and 84% of the lactose from milk whey when incubated at their original pH (4.5 and 6.34, respectively) under optimum temperature conditions. When incubated with a 40% lactose solution in 150 mM McIlvaine buffer, pH 4.5, at 55°C the enzyme converted 86.5% of the lactose to its component monosaccharides. When incubated with a 60% lactose solution in the same buffer but at pH 6.5 and 50°C, the enzyme can synthetize up to 30.5% TOS, with 39.5% lactose and 30% monosaccharides remaining in the preparation.


1969 ◽  
Vol 115 (4) ◽  
pp. 733-739 ◽  
Author(s):  
M. Cole

1. A method is given for the preparation of penicillin acylase by using Escherichia coli N.C.I.B. 8743 and a strain selected for higher yield. The enzyme is associated with the bacterial cells and removes the side chains of penicillins to give 6-amino-penicillanic acid and a carboxylic acid. 2. The rates of penicillin deacylation indicated that p-hydroxybenzylpenicillin was the best substrate, followed in diminishing order by benzyl-, dl-α-hydroxybenzyl-, 2-furylmethyl-, 2-thienylmethyl-, d-α-aminobenzyl-, n-propoxymethyl- and isobutoxymethyl-penicillin. Phenylpenicillin and dl-α-carboxybenzylpenicillin were not substrates and phenoxymethyl-penicillin was very poor. 3. Amides and esters of the above penicillins were also substrates for the deacylation reaction, as were cephalosporins with a thienylmethyl side chain. 4. For the deacylation of 2-furylmethylpenicillin at 21° the optimum pH was 8·2. The optimum temperature was 60° at pH7. 5. By using selection A of N.C.I.B. 8743 and determining reaction velocities by assaying yields of 6-amino-penicillanic acid in a 10min. reaction at 50° and pH8·2, the Km for benzylpenicillin was found to be about 30mm and the Km for 2-furylmethylpenicillin, about 10mm. The Vmax. values were 0·6 and 0·24μmole/min./mg. of bacterial cells respectively.


Author(s):  
Tantry Febrinasari ◽  
Hasegawa Tae ◽  
Nakanishi Riki ◽  
Akkharapimon Yotsombat ◽  
Takata Goro ◽  
...  

In the present study, a potential corncob xylan degradation fungi was isolated and screened from soil to produce xylanase, and was identified as Fusarium oxysporum. The production of xylanase by F. oxysporum under solid state fermentation using corncob powder as the solid substrate reached the maximum xylanase activity when using particle size of substrate of 60 mesh, water content ratio of 2 mL/g substrate, incubation temperature of 30°C, initial pH of 6.0, size of inoculum of 5x107 spore/3 g substrate, and incubation time of 2 days. The xylanase activity increased about 4 times up to 7.92 U/mL after optimization. The potential application of xylanase of F. oxysporum in hydrolyzing alkali-treated corncob xylan to produce xylobiose was also demonstrated. Hydrolysis of 6% of corncob xylan using 100 U/g substrate of enzyme loading under optimum pH and temperature conditions (pH 5.5 and 50°C, respectively) achieved the yield of xylobiose up to 28.7 g/100 g pure xylan after 12 h incubation. The purification of hydrolysate could retain 91.1% of xylobiose. Further separation step using activated charcoal column chromatography was able to get a pure xylobiose, but could only recover 59.3% of xylobiose.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Eleni Gomes ◽  
Rodrigo Simões Ribeiro Leite ◽  
Roberto da Silva ◽  
Dênis Silva

An exo-PG obtained fromPenicillium viridicatumin submerged fermentation was purified to homogeneity. The apparent molecular weight of the enzyme was 92 kDa, optimum pH and temperature for activity were pH 5 and 50–55∘C. The exo-PG showed a profile of an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of pectin with a high degree of esterification (D.E.). IonsCa2+enhanced the stability of enzyme and its activity by 30%. TheKmwas 1.30 in absence ofCa2+and 1.16 mgmL−1in presence of this ion. In relation to theVmaxthe presence of this ion increased from 1.76 to 2.07 μmolmin−1mg−1.


2011 ◽  
Vol 236-238 ◽  
pp. 1793-1798 ◽  
Author(s):  
Hua Zheng Liang ◽  
He Chen ◽  
Jian Feng Wang ◽  
Yu Lan He

Co-immobilize enzyme by cross-linking and embedding, optimize conditions for immobilizing, determinate the enzymatic properties of co-immobilized enzyme and study the methods for preparation of genipin using co-immobilized enzyme to hydrolyze geniposide. Optimized immobilizing conditions include glutaraldehyde concentration being 0.15%, cross-linking temperature being 20°C, cross-linking time being 2 hours, the activity of co-immobilized β-glucosidase and cell reaches to 65.33U/mg and the enzyme activity recovery being 52.63%. Enzymatic properties of co-immobilized enzyme are following: optimum temperature is 55°C and optimum pH is 5.0. The transformation experiments are carried out with co-immobilized enzyme. The results show that half-life of co-immobilized enzyme reaches around 40 days, higher than the normal immobilized enzyme. The conversion rate of geniposide is above 95% after 8 hours. The genipin is isolated, purified and recrystallized to reach more than 98% of purity by High Performance Liquid Chromatography. Advantages to prepare genipin using co-immobilized enzyme include low cost, high yield, environmental friendly and easy to manufacturing.


2016 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Omar M. Atrooz

<p>β-galactosidase (EC 3.2.1.23) was extracted from <em>Cuminum cyminum </em>and<em> Curcuma longa</em>. The crude extracts of these plants were then characterized in term of pH, temperature, and enzyme kinetic. The crude extracts were also used in hydrolysis of lactose in milk and whey. The enzyme activity was measured by its ability to hydrolyze the substrate o-nitrophenyl β -D-galactopyranoside (ONPG).</p><p>It was found that β-galactosidase in the crude extracts of <em>Cuminum cyminum </em>exhibited maximum activity at pH 8.0 and optimum temperature at 60 °C. While, β-galactosidase in the crude extracts of <em>Curcuma longa</em> have optimum pH at 5.0 and 7.0 and optimum temperature at 50 °C.The K<sub>m</sub> and V<sub>max</sub> values of the β-galactosidase in the crude extracts of <em>Cuminum cyminum</em> and <em>Curcuma longa </em>were 4.16 mM and 0.087 μmol/min, and 2.63 mM and 0.333μmol/min, respectively.</p><p>The results showed that 96.84-97.08% of lactose was hydrolyzed in cow’s milk and whey when treated with crude extracts of <em>Cuminum cyminum</em> and 90-98.6% when treated with crude extracts of <em>Curcuma longa</em>.</p>


2019 ◽  
Vol 124 ◽  
pp. 01047 ◽  
Author(s):  
J. V. Karaeva ◽  
V. O. Zdor ◽  
A. I. Kadyirov ◽  
E. V. Shamsutdinov

This paper presents the research results of jet mixing and heating processes of crude oil of the Zachebashskoe field (Republic of Tatarstan) and fuel oil M100 in a tank with a capacity of 2000 m3. Circulation systems with nozzle inclination in the range from -25° up to 125° are considered. The presence and washing out of bottom sediments in the tank are modeled. The time required for removing the bottom sediments and for heating the tank to the optimum temperature is determined. The best heating for the tank with oil and fuel oil was observed at the nozzle inclination in the range from -25° up to 60°. The optimal nozzle inclination was 115° for washing out the bottom sediments in the oil tank. To remove sediment in a tank with fuel oil it is recommended to use the same nozzle inclinations as for heating.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Gastón Ezequiel Ortiz ◽  
Diego Gabriel Noseda ◽  
María Clara Ponce Mora ◽  
Matías Nicolás Recupero ◽  
Martín Blasco ◽  
...  

A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (Ea), quotient energy (Q10), Km, and Vmax were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively.


Food Research ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 1582-1587
Author(s):  
Yuniwaty Halim ◽  
Fransiska ◽  
Hardoko ◽  
R. Handayani

Chitin is a natural biopolymer found in shrimp shells and can be processed into Nacetylglucosamine which is extensively used as a dietary supplement to treat osteoarthritis, back pain and knee pain. This research was conducted to determine the optimum pH, temperature, substrate concentration and incubation period to produce Nacetylglucosamine using crude and semi pure intracellular chitinase extracted from Mucor circinelloides. Chitinase activity was measured to determine optimum pH and temperature by using various pHs (3, 4, 5, 6, 7, 8 and 9) and temperatures (30oC, 40oC, 50oC, 60oC, 70oC and 80oC). Different substrate concentrations (0.5%, 1.0%, 1.5% and 2.0%) and incubation periods (2, 4, 6 and 24 hrs) were used to determine the optimum condition to produce N-acetylglucosamine. Results showed that crude intracellular chitinase had an optimum pH of 5 with chitinase activity of 4.16±0.07 U/mL and optimum temperature of 60oC with chitinase activity of 4.22±0.07 U/mL. The optimum substrate concentration obtained was 0.5% and the optimum incubation period obtained was 6 hrs with about 961.67±9.13 ppm N-acetylglucosamine produced. Semi pure intracellular chitinase had an optimum pH of 4 with chitinase activity of 4.75±0.09 U/mL and optimum temperature of 50oC with chitinase activity of 5.03±0.08 U/mL. The optimum substrate concentration obtained was 1.5% and the optimum incubation period obtained was 4 hrs with about 1150.56±12.55 ppm N-acetylglucosamine produced.


2021 ◽  
Author(s):  
Karolline Christiny Szeremeta da Silva ◽  
Yuri Carvalho ◽  
Eduardo Falabella Sousa-Aguiar

Abstract β-glucosidase was used as catalyst for the hydrolysis of cellobiose, immobilized on different supports, including two silicas (MSNS and MCM-41) and three carbon supports (GAC, BDH and Norit). It was observed that mesoporous nanoparticles are better candidates as supports for the β-glucosidase, and that silica has a better performance, probably due to the presence of silanol groups. The MSNS showed better recovered activity compared to other supports, showing an optimum temperature at 70 0 C and an optimum pH of 5. The enzyme immobilized in MSNS showed results 80% to 98% better than those immobilized on other supports. However, for the recycling test, from the second cycle onwards, the MSNS showed a performance drop of around 40%, reaching a relative activity of 41.9% for both the fourth and the final cycle. MCM-41, on the other hand, did not show as much discrepancy in the recycling test. However, its relative activity in the first cycle was 20% of the activity achieved by MSNS, at its optimum temperature of 60 0 C. Such results indicate that the smaller particle size favours enzymatic activity. Notwithstanding, a larger available intra-pore surface area protects the enzyme from denaturation.


Sign in / Sign up

Export Citation Format

Share Document