scholarly journals Optimization of mycobiosynthesis of silver nanoparticles by using Fusarium 4F1 and Trichoderma TRS isolates

2020 ◽  
Vol 49 (2) ◽  
pp. 343-348
Author(s):  
Shital Pal ◽  
KS Hossain

Silver nanoparticles (Ag-NPs) by mixing silver nitrate (AgNO3) with cell-free filtrate (CFF) of the two fungal isolates viz., Fusarium 4F1 and Trichoderma TrS were synthesized. pH, substrate concentration and incubation period for the production of better quality and quantity of Ag-NPs was optimized. The Ag-NPs by UV-vis spectroscopy were characterized. Between the two fungal isolates, pH levels, AgNO3 concentrations and incubation periods studied, the highest number of spherical shaped, monodispersed and stable Ag-NPs were recorded from Fusarium 4F1 at pH 9, 2 mM AgNO3 and 72 hrs of incubation.

2021 ◽  
Vol 10 (1) ◽  
pp. 412-420
Author(s):  
Mona S. Alwhibi ◽  
Dina A. Soliman ◽  
Manal A. Awad ◽  
Asma B. Alangery ◽  
Horiah Al Dehaish ◽  
...  

Abstract In recent times, research on the synthesis of noble metal nanoparticles (NPs) has developed rapidly and attracted considerable attention. The use of plant extracts is the preferred mode for the biological synthesis of NPs due to the presence of biologically active constituents. Aloe vera is a plant endowed with therapeutic benefits especially in skincare due to its unique curative properties. The present study focused on an environmental friendly and rapid method of phytosynthesis of silver nanoparticles (Ag-NPs) using A. vera gel extract as a reductant. The synthesized Ag-NPs were characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR), and dynamic light scattering (DLS). TEM micrographs showed spherical-shaped synthesized Ag-NPs with a diameter of 50–100 nm. The UV-Vis spectrum displayed a broad absorption peak of surface plasmon resonance (SPR) at 450 nm. The mean size and size distribution of the formed Ag-NPs were investigated using the DLS technique. Antibacterial studies revealed zones of inhibition by Ag-NPs of A. vera (9 and 7 mm) against Pseudomonas aeruginosa and Escherichia coli, respectively. Furthermore, the antifungal activity was screened, based on the diameter of the growth inhibition zone using the synthesized Ag-NPs for different fungal strains. Anticancer activity of the synthesized Ag-NPs against the mouse melanoma F10B16 cell line revealed 100% inhibition with Ag-NPs at a concentration of 100 µg mL−1. The phytosynthesized Ag-NPs demonstrated a marked antimicrobial activity and also exhibited a potent cytotoxic effect against mouse melanoma F10B16 cells. The key findings of this study indicate that synthesized Ag-NPs exhibit profound therapeutic activity and could be potentially ideal alternatives in medicinal applications.


2020 ◽  
Vol 2 (1) ◽  
pp. 24

Silver nanoparticles (Ag-NPs) were prepared by the biological reduction method. Green tea extract was taken as a reducing and stabilizing agent and silver nitrate as the metal precursor for nanoparticle synthesis. The formation of the silver nanoparticles was monitored visually and using UV-Visible absorption spectroscopy. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, FTIR, Zeta sizer, Zeta potential, and antimicrobial studies. Silver nanoparticles were also subjected to investigate nanocatalytic activity with standard pancreatic alpha-amylase and bacterial amylase enzyme by the DNS assay method. UV-Vis spectroscopy revealed the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 430 nm. Four major functional groups of bio-molecules such as phenol, carboxylic acid, protein, and alkyl group were recorded in FTIR spectra. The size of the nanoparticles ranges between 5nm and 150nm. The average size and size distribution of silver nanoparticles is 59.66nm. The zeta potential of the silver nanoparticle is negatively charged and rendered as a sharp peak at -31.7mV. Antimicrobial activity of silver nanoparticles exhibited the highest inhibition against Gram-negative bacteria than Gram-positive bacteria and yeast pathogens. Starch hydrolysis of Ag-NPs was studied with pancreatic alpha-amylase (tailor made), crude and purified bacterial amylase enzyme. The formation of reducing sugar was increased about 40-fold for a purified enzyme, 11-fold for the pancreatic enzyme, and 6-fold for crude bacterial enzyme incorporated with Ag-NPs over control. The present studies recommended that Ag-NPs have a significant role in the degradation of starch into reducing sugars by acting as a nanocatalyst.


Author(s):  
N. I. Hulkoti ◽  
T. C. Taranath

In this study we describe the phytofabrication of AgNps through a green route as a cost-effective, instantaneous and an eco-friendly approach using Petrea volubilis L. stem broth. The influence of physico-chemical parameters - contact time, stem broth quantity, pH, temperature, and silver nitrate concentration were studied and optimised to engineer, nanoparticles of diverse sizes. Nanoparticles were characterized by UV-Vis spectroscopy, FTIR, XRD, Zeta potential, EDS, and HRTEM. The characterization using HRTEM showed that, the nanoparticles were spherical and with increase in contact time, stem broth quantity, pH, and temperature, the NPs size minimised whereas escalation in silver nitrate concentration, increased their size. Capping molecules were negatively charged and the NPs were passably stable according to zeta potential readings and they were crystalline as per XRD data. According to FTIR analysis, the bio reduction was attributed to alcohol, ethers, carboxylic acids, and esters. The highest anti-bacterial activity was observed against S. aureus and S. typhi whose ZOI diameter was 13 mm at 100?l in both bacteria. The highest anti-fungal activity of silver nanoparticles was observed against A. flavus whose ZOI diameter was 9 mm at 100?l compared to P. chrysogenum which is 3 mm at 100?l. The stem broth did not show any anti-microbial activity for the microbes. Anti-microbial activity of AgNPs is due to its small size and high surface area. Our findings clearly discloses that sizes of silver nanoparticles can be varied by varying the physico-chemical parameters and the small sized nanoparticles so formed are promising antimicrobial agents and has a great potential in various medical applications.


Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Mahsa Eshghi ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Mohammad Najian ◽  
Hoda Jafarizadeh-Malmiri ◽  
...  

Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1–0.9 mL) and an amount of 1 mM AgNO3 solution (15–25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and −15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO3. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.


2017 ◽  
Vol 57 (2) ◽  
pp. 194-200 ◽  
Author(s):  
Abdul A. Buhroo ◽  
Gousul Nisa ◽  
Syed Asrafuzzaman ◽  
Ram Prasad ◽  
Razia Rasheed ◽  
...  

AbstractThe present exploration is focused on the bio-fabrication of silver nanoparticles (Ag NPs) usingTrichodesma indicumaqueous leaf extract as a reducing agent. The synthesized Ag NPs were productively characterized by UV-vis spectroscopy, XRD, and TEM studies. The photosynthesis of Ag NPs was done at room temperature for 24 h and at 60°C. The green synthesis of spherical-shaped Ag NPs bio-fabricated fromT. indicumwith a face centred cubic structure showed average particle sizes of 20–50 nm, which is inconsistent with the particle size calculated by the XRD Scherer equation and TEM analysis. We further explored the larvicidal efficacy of biosynthesized Ag NPs with leaf extracts ofT. indicumagainstMythimna separata. The results showed that Ag NPs (20–50 nm) ofT. indicumpossess good larvicidal activity againstM. separatawith an LC50of 500 ppm. Thus, we can advocate that Ag NPs of 20–50 nm size extracted fromT. indicummay be considered in the pest management programme ofM. separatain future.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Margarita I. Skiba ◽  
Victoria I. Vorobyova ◽  
Alexander Pivovarov ◽  
Natalya P. Makarshenko

The process of obtaining aqueous solutions of silver nanoparticles with the use of a low-temperature nonequilibrium contact plasma and stabilizing agent—polysaccharide (sodium alginate)—has been examined. The synthesized Ag NPs were characterized by using UV-Vis spectroscopy, dynamic light scattering (DLS), scanning electron microscope (SEM), and XRD analysis. The effect of concentration of Ag+, sodium alginate, duration of processing by plasma discharge, and pH of liquid on the production of silver nanoparticles has been studied. The results demonstrated that synthesis provides the formation of silver nanoparticles for investigated concentrations of Ag+ (0.3-3.0 mmol/l) and 5.0 g/l Na-Alg (pH=7–10) within 1–5 minutes. From the SEM images, the silver nanoparticles are found to be almost spherical. Powder XRD results reveal that Ag nanoparticles have a face-centered cubic crystal structure. Zeta potential of plasma-chemically obtained colloidal solutions at various concentrations of Ag+ ions and stabilizing agent varies from −32.8 to −39.3 mV, indicating the moderate stability of synthesized nanoparticles.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Melisa A. Quinteros ◽  
Ivana M. Aiassa Martínez ◽  
Pablo R. Dalmasso ◽  
Paulina L. Páez

Currently, the biosynthesis of silver-based nanomaterials attracts enormous attention owing to the documented antimicrobial properties of these ones. This study reports the extracellular biosynthesis of silver nanoparticles (Ag-NPs) using aPseudomonas aeruginosastrain from a reference culture collection. A greenish culture supernatant ofP. aeruginosaincubated at 37°C with a silver nitrate solution for 24 h changed to a yellowish brown color, indicating the formation of Ag-NPs, which was confirmed by UV-vis spectroscopy, transmission electron microscopy, and X-ray diffraction. TEM analysis showed spherical and pseudospherical nanoparticles with a distributed size mainly between 25 and 45 nm, and the XRD pattern revealed the crystalline nature of Ag-NPs. Also it provides an evaluation of the antimicrobial activity of the biosynthesized Ag-NPs against human pathogenic and opportunistic microorganisms, namely,Staphylococcus aureus,Staphylococcus epidermidis,Enterococcus faecalis,Proteus mirabilis,Acinetobacter baumannii,Escherichia coli,P. aeruginosa, andKlebsiella pneumonia. Ag-NPs were found to be bioactive at picomolar concentration levels showing bactericidal effects against both Gram-positive and Gram-negative bacterial strains. This work demonstrates the first helpful use of biosynthesized Ag-NPs as broad spectrum bactericidal agents for clinical strains of pathogenic multidrug-resistant bacteria such as methicillin-resistantS. aureus,A. baumannii, andE. coli. In addition, these Ag-NPs showed negligible cytotoxic effect in human neutrophils suggesting low toxicity to the host.


2021 ◽  
Vol 51 (12) ◽  
Author(s):  
Patrícia Érica Fernandes ◽  
Roberta Barbosa Teodoro Alves ◽  
Natan de Jesus Pimentel-Filho ◽  
João Paulo Natalino de Sá ◽  
Hilário Cuquetto Mantovani ◽  
...  

ABSTRACT: Biocides and/or antibiotics used in subinhibitory concentrations can promote the development of adaptive resistance or even cross-resistance in microorganisms. However, studies on these responses following silver treatments are scarce in the literature. Silver-based compounds, including silver nanoparticles (Ag-NPs), can be an alternative in the prevention and treatment of bovine mastitis. Thus, this research evaluated the effect of subinhibitory dosages of Ag-NPs and Ag+ ions from silver nitrate (AgNO3) on Staphylococcus aureus and Escherichia coli isolated from milk of cows with mastitis. Ag-NPs were synthesized by chemical reduction using AgNO3 and sodium citrate and the minimum inhibitory concentration (MIC) of Ag-NPs and Ag+ ions on the mastitis pathogens were determined. Isolates were exposed to subinhibitory concentrations of Ag-NPs or AgNO3 for 10 consecutive days to verify the development of adaptive resistance evaluated by changes in the MIC values. The development of cross-resistance with antibiotics was also studied, being verified by comparing the sensitivity profile of treated cells with non-treated cells. AgNO3 was more effective against all isolates. There was no change in the MIC values or in the antibiotic sensitivity profile for both bacteria following consecutive exposure to subinhibitory dosages of Ag-NPs or AgNO3, indicating that silver was not able to select adaptive resistance or cross resistance to the tested antibiotics. The potential of silver presented by these results is favorable to the continuity of studies aiming to elaborate silver-based therapies for the treatment of bovine mastitis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3241
Author(s):  
Manal N. Abdel Azeem ◽  
Safwat Hassaballa ◽  
Osama M. Ahmed ◽  
Khaled N. M. Elsayed ◽  
Mohamed Shaban

More suitable wastewater treatment schemes need to be developed to get rid of harmful dyes and pigments before they are discharged, primarily from apparel and textile factories, into water bodies. Silver nanoparticles (Ag-NPs) are very effective, reductive nanocatalysts that can degrade many organic dyes. In this study, Ag-NPs are stabilized and capped with bioactive compounds such as Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa from marine macroalgae extracts to produce Ag[GE], Ag[TE], and Ag[EE] NPs. The reduction of Ag ions and the production of Ag[GE], Ag[TE], and Ag[EE] NPs have been substantiated by UV–Vis spectroscopy, SEM, EDX, and XRD tests. The NPs are sphere and crystalline shaped in nature with dimensions ranging from 20 to 25 nm. The biosynthesized Ag[GE], Ag[TE], Ag[EE] NPs were applied to photodegrade hazardous pigments such as methylene blue, Congo red, safranine O, and crystal violet under sunlight irradiation. In addition to the stability analysis, various experimental parameters, including dye concentration, exposure period, photocatalyst dose, and temperature, were optimized to achieve 100% photodegradation of the dyes. Moreover, the thermodynamic and kinetic parameters were calculated and the impact of scavengers on the photocatalytic mechanism was also investigated.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Atanu Bhattacharyya ◽  
Ram Prasad ◽  
Abdul A. Buhroo ◽  
Prabha Duraisamy ◽  
Insha Yousuf ◽  
...  

The espousal of nanotechnology is a current come-up of the present revolution. As we know that the rose aphid, Macrosiphum rosae (Hemiptera: Aphididae), is a key pest on rose plant in Kashmir Valley, India, it exhibits a worldwide distribution. In the present study, we have synthesized biologically silver nanoparticles (Ag NPs) from Solanum lycopersicum and characterized them by UV-vis spectroscopy, TEM, and X-RD analysis. The experiment was performed by leaf dip method. Insecticidal solutions of different Ag NPs concentrations, namely, 200, 300, 400, and 500 ppm, were tested on M. rosae. For assessment purposes, leaves were treated with distilled water (used as control). Aphid mortality data revealed that the Ag NPs were effective at 500 ppm concentration. As the concentration and day’s treatment increased, the aphid mortality rate also increased. There were statistically significant differences in M. rosae mortality between concentrations by LSD at 5%. In wrapping up, the use of Ag NPs in pest control processes will be the most novel eco-friendly approach in the Kashmir Valley, India, in future.


Sign in / Sign up

Export Citation Format

Share Document