One-Dimensional Preliminary Centrifugal Compressor Design Tool for Undergraduate Courses

Author(s):  
Daniel da Silva Tonon ◽  
George Guimarães Dias Siqueira ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti
1984 ◽  
Author(s):  
Gregory J. Holbrook ◽  
Joost J. Brasz

An integrated centrifugal compressor design procedure is described consisting of several phases, each using progressively more complex models. After initially sizing the compressor overall geometry, the detailed geometry is first determined from a one-dimensional mean streamline model. This geometry is subsequently analyzed by more complex two-dimensional hub-to-shroud and blade-to-blade internal flow models. The one-dimensional mean streamline model is a key element in this integrated design procedure, since it links the results of the preliminary sizing model with the more sophisticated two-dimensional internal flow models. It quickly determines a complete (hub and shroud contour and blade angle distributions) compressor geometry from a desired blade loading distribution and the overall performance requirements of the compressor. After a presentation of this mean streamline design model and its assumptions, an impeller design case study is given using the integrated centrifugal compressor design procedure. From a comparison between the actual flow predictions of the various models it can be concluded that the major aerodynamic trends are properly described by the mean streamline model.


2021 ◽  
Vol 39 (1) ◽  
pp. 107-120
Author(s):  
Brihmat Mostefa ◽  
Refassi Kaddour ◽  
Douroum Embarek ◽  
Kouadri Amar

Centrifugal compressors have been used in many areas of the machinery. The centrifugal compressor design is very complex, and a unique design system needs to be developed. A centrifugal compressor design system should be easy to use in interface and also flexible for inputs and outputs. The design tool also needs to be able to predicate the compressor performance in a fairly accurate level. In this study, we have developed a general analyses and optimization approach in the design and performance analysis of centrifugal turbomachines. This approach is based on different methods starting from a 1D approach up to the 3D study of the internal flow. It presents itself as a robust procedure for predicting and understanding the phenomena associated with the operation of turbomachines, but also for predicting performance. Current design system includes initial parameter studies, throughflow calculation, impeller design. The main improvements of the design system are adding the interface to allow users easy to use, adding the input and output capabilities and modifying few correlations. Current design system can predict the blade loading and compressor performance better compared with original design system. To check the aerodynamic appearance of the centrifugal compressor impeller blades, we must change the impeller dimensions and focus on changing axial length, but when changing the blade numbers, the model that improved efficiency and power at the same time introduced a design with a 0.274% and 10.735% improvement in each respectively in comparison to the initial impeller at the design point.


Author(s):  
E Swain

A one-dimensional centrifugal compressor performance prediction technique that has been available for some time is updated as a result of extracting the component performance from three-dimensional computational fluid dynamic (CFD) analyses. Confidence in the CFD results is provided by comparison of overall performance for one of the compressor examples. The extracted impeller characteristic is compared with the original impeller loss model, and this indicated that some improvement was desirable. The position of least impeller loss was determined using a traditional axial compressor cascade method, and suitable algebraic expressions were derived to match the CFD data. The merit of the approach lies with the relative ease that CFD component performance currently can be achieved and adjusting one-dimensional methods to agree with the CFD-derived models.


2000 ◽  
Author(s):  
Zhilong He ◽  
Xueyuan Peng ◽  
Pengcheng Shu

Abstract This paper presents a numerical method for simulating the thermal and fluid-dynamic behavior of hermetic compressors in the whole compressor domain. The model of fluid flow is developed by integrating transient one-dimensional conservation equations of continuity, momentum and energy through all of the elements from suction line to discharge line. The model describing thermal behavior is based on heat balance in the components such as muffler, connecting tubes and orifices. The calculation of the thermodynamic and transport properties for different refrigerants at various conditions has been considered, and some numerical results for a hermetic compressor are presented. The present study has demonstrated that the numerical simulation is a fest and reliable tool for compressor design.


Author(s):  
Xiaojian Li ◽  
Yijia Zhao ◽  
Zhengxian Liu ◽  
Hua Chen

The overall trend of centrifugal compressor design is to strive for high aerodynamic performance and high flow capacity products. A new methodology is derived to implement a preliminary design for high flow capacity centrifugal impeller with and without prewhirl. First, several new non-dimensional equations connecting impeller geometric and aerodynamic parameters are derived for the maximum flow capacity. The effects of prewhirl on mass flow function, inlet diameter ratio and work coefficient are discussed, respectively. Then, based on these equations, a series of design diagrams are drawn to extract the universal rules in centrifugal impeller design with prewhirl. Some physical limits of design maps are also discussed. Finally, the throat area of impeller is discussed under prewhirl, and the matching principle between prewhirl impeller and vaned diffuser is derived and validated. The proposed method can be used to design a new centrifugal compressor, or to evaluate the design feasibility and the challenge of a given design specification.


Author(s):  
Ronald P. Porter

A high efficiency, low cost gas compressor is under development. Design has been completed and fabrication is in process. The manufacturer’s background in centrifugal compressor design and current methodology is discussed along with product definition. Assembly and test of the first unit is planned for summer 1996. The design features a single-stage overhung centrifugal compressor, variable inlet guide vanes, and dry gas seals.


Author(s):  
Shashank Mishra ◽  
Shaaban Abdallah ◽  
Mark Turner

Multistage axial compressor has an advantage of lower stage loading as compared to a single stage. Several stages with low pressure ratio are linked together which allows for multiplication of pressure to generate high pressure ratio in an axial compressor. Since each stage has low pressure ratio they operate at a higher efficiency and the efficiency of multi-stage axial compressor as a whole is very high. Although, single stage centrifugal compressor has higher pressure ratio compared with an axial compressor but multistage centrifugal compressors are not as efficient because the flow has to be turned from radial at outlet to axial at inlet for each stage. The present study explores the advantages of extending the axial compressor efficient flow path that consist of rotor stator stages to the centrifugal compressor stage. In this invention, two rotating rows of blades are mounted on the same impeller disk, separated by a stator blade row attached to the casing. A certain amount of turning can be achieved through a single stage centrifugal compressor before flow starts separating, thus dividing it into multiple stages would be advantageous as it would allow for more flow turning. Also the individual stage now operate with low pressure ratio and high efficiency resulting into an overall increase in pressure ratio and efficiency. The baseline is derived from the NASA low speed centrifugal compressor design which is a 55 degree backward swept impeller. Flow characteristics of the novel multistage design are compared with a single stage centrifugal compressor. The flow path of the baseline and multi-stage compressor are created using 3DBGB tool and DAKOTA is used to optimize the performance of baseline as well novel design. The optimization techniques used are Genetic algorithm followed by Numerical Gradient method. The optimization resulted into improvements in incidence and geometry which significantly improved the performance over baseline compressor design. The multistage compressor is more efficient with a higher pressure ratio compared with the base line design for the same work input and initial conditions.


Author(s):  
Keiji Tajiri ◽  
Jinhui Zhao ◽  
William C. Hohlweg ◽  
Haijie Zhang

Automatic optimization techniques have been used in recent years to facilitate more rapid analyses of different design options with multiple performance objectives. Typically, this process has been used during new product development. In this paper, a design system is presented, which enables the multipoint, multi-objective optimization of the centrifugal compressor stage aerodynamic components. Moreover, it is applied to a design modification of a multistage compressor, during the manufacturing cycle, for risk mitigation. The system is based on the application of the Isight code for coupling of one dimensional direct design and analysis with multi-objective genetic algorithms, design of experiment, and response surface method. The design system was applied to a redesign of the diffuser, crossover, and return channel of two stages in a multistage compressor. The geometry parameterization is performed by a one dimensional analysis method where the diffuser width, crossover inlet and exit width and associated inner and outer radii, are used to describe the meridional flow path while holding the return vane geometry unchanged. Centrifugal compressor performance parameters, such as polytropic head and efficiency at the client rated point, head rise to surge, and choke flow capacity are evaluated during the optimization process. The example confirmed the validity of the system to perform the optimization of turbomachine components in a time efficient manner to meet production schedule. The system also allowed for a sensitivity analysis of the impact of geometry parameters on the aerodynamic performance, contributing to the development of guidelines for manufacturers to design new products and mitigate the performance risk on test floor.


Author(s):  
Matthias Hamann ◽  
Elias Chebli ◽  
Markus Müller ◽  
Alexander Krampitz

Centrifugal compressors for automotive turbochargers have large influence on the operation characteristic of combustion engines. Especially the improvement of the surge margin is one of the most important development targets. Thereby, a reliable detection of local flow phenomena within the compressor stage is necessary and a procedure to gain this information from standard measurement data is discussed in this paper. A one–dimensional calculation methodology for a single-stage centrifugal compressor with a vaneless diffuser and casing treatment is presented. The tool calculates the flow properties at the impeller inlet and exit as well as at diffuser exit, based on the measured inlet and outlet data and the geometry information of the compressor. The calculated flow characteristics are plotted within the measured compressor performance map to show local flow parameters. The unsteady recirculation flow within the casing treatment, the inflow angle and the total pressure losses are considered. The tool is validated on different compressor sizes. Thereby the compressor is equipped with static pressure measuring points at the impeller inlet and exit as well as at the diffuser exit. The calculated static pressure correlated well with the measured data with an accuracy of 2 % to 5 % on 95 % of the operating range. In this paper an experimental parameter study is executed in order to improve the surge margin. Thereby the geometry of the diffuser and the casing treatment is varied and the compressor performance is measured on a turbocharger test rig. The calculation of the flow angles and other flow characteristics within the diffuser enables one to find out whether surge is triggered through the diffuser or the impeller.


Sign in / Sign up

Export Citation Format

Share Document