Enhancing the Centrifugal Compressor Performance Map Measurements Through a Developed One–Dimensional Calculation Tool to Analyse Local Flow Phenomena

Author(s):  
Matthias Hamann ◽  
Elias Chebli ◽  
Markus Müller ◽  
Alexander Krampitz

Centrifugal compressors for automotive turbochargers have large influence on the operation characteristic of combustion engines. Especially the improvement of the surge margin is one of the most important development targets. Thereby, a reliable detection of local flow phenomena within the compressor stage is necessary and a procedure to gain this information from standard measurement data is discussed in this paper. A one–dimensional calculation methodology for a single-stage centrifugal compressor with a vaneless diffuser and casing treatment is presented. The tool calculates the flow properties at the impeller inlet and exit as well as at diffuser exit, based on the measured inlet and outlet data and the geometry information of the compressor. The calculated flow characteristics are plotted within the measured compressor performance map to show local flow parameters. The unsteady recirculation flow within the casing treatment, the inflow angle and the total pressure losses are considered. The tool is validated on different compressor sizes. Thereby the compressor is equipped with static pressure measuring points at the impeller inlet and exit as well as at the diffuser exit. The calculated static pressure correlated well with the measured data with an accuracy of 2 % to 5 % on 95 % of the operating range. In this paper an experimental parameter study is executed in order to improve the surge margin. Thereby the geometry of the diffuser and the casing treatment is varied and the compressor performance is measured on a turbocharger test rig. The calculation of the flow angles and other flow characteristics within the diffuser enables one to find out whether surge is triggered through the diffuser or the impeller.

Author(s):  
E Swain

A one-dimensional centrifugal compressor performance prediction technique that has been available for some time is updated as a result of extracting the component performance from three-dimensional computational fluid dynamic (CFD) analyses. Confidence in the CFD results is provided by comparison of overall performance for one of the compressor examples. The extracted impeller characteristic is compared with the original impeller loss model, and this indicated that some improvement was desirable. The position of least impeller loss was determined using a traditional axial compressor cascade method, and suitable algebraic expressions were derived to match the CFD data. The merit of the approach lies with the relative ease that CFD component performance currently can be achieved and adjusting one-dimensional methods to agree with the CFD-derived models.


Author(s):  
Johannes Ratz ◽  
Sebastian Leichtfuß ◽  
Maximilian Beck ◽  
Heinz-Peter Schiffer ◽  
Friedrich Fröhlig

Currently, 3D-CFD design optimization of centrifugal compressors in terms of the surge margin is one major unresolved issue. On that account, this paper introduces a new kind of objective function. The objective function is based on local flow parameters present at the design point of the centrifugal compressor. A centrifugal compressor with a vaned diffuser is considered to demonstrate the performance of this approach. By means of a variation of the beta angle distribution of the impeller and diffuser blade, 73 design variations are generated, and several local flow parameters are evaluated. Finally, the most promising flow parameter is transferred into an objective function, and an optimization is carried out. It is shown that the new approach delivers similar results as a comparable optimization with a classic objective function using two operating points for surge margin estimation, but with less computational effort since no second operating point near the surge needs to be considered.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Robert Kunte ◽  
Philipp Schwarz ◽  
Benjamin Wilkosz ◽  
Peter Jeschke ◽  
Caitlin Smythe

The subject of this paper is the experimental and numerical investigation of a state-of-the-art high pressure centrifugal compressor stage with pipe diffuser for a jet engine application. This study shows the impact of impeller tip clearance- and bleed-variation on the centrifugal stage. The purpose of this paper is threefold. In the first place, it investigates the effects on the stage performance. Secondly, it seeks to explain local flow-phenomena, especially in the diffuser. Finally, it shows that steady CFD simulations are capable of predicting these phenomena. Experimental data were gathered using conventional pitot and three-hole-probes as well as particle-image-velocimetry. Numerical simulations with the CFD solver TRACE were conducted to get fundamental insight into the flow. Thus, this study contributes greatly towards understanding the principle of the flow phenomena in the pipe diffuser of a centrifugal compressor.


Author(s):  
C. Rodgers

Test results pertaining to the characteristics of single-stage centrifugal compressors with backswept impellers and channel-type diffusers are presented and analyzed to formulate major performance criteria influencing maximum diffusion capability. For any given stage, it was determined that stage surge (when triggered by diffuser stall), occurred near a constant mean stream velocity diffusion ratio between the impeller tip and diffuser throat. This diffusion ratio attained a maximum value of 1.8 for impeller tip Mach numbers less than unity, but was not unique for all stages, being more intimately coupled with throat blockage accumulation as a function of diffusion rate. This was identified by testing some vaned diffusers beyond the stall limit where rapid blockage accumulation precipitated an immediate decrease in channel diffuser and system static pressure recovery. The results of various experiments in the vaneless space are also described to illustrate the sensitivity of the vaneless space flow upon centrifugal compressor performance.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Stefan Ubben ◽  
Reinhard Niehuis

Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. Compressor map measurements provide a summary of the operating behavior related to diffuser geometry and impeller speed, whereas detailed flow measurements with temperature and pressure probes allow a breakdown of the losses between impeller and diffuser and contribute to a better understanding of relevant flow phenomena. The results presented in Part I show that an one-sided diffuser clearance does not necessarily has a negative impact on the operation and loss behavior of the centrifugal compressor, but instead may contribute to an increased pressure ratio and improved efficiency as long as the diffuser passage is broad enough with respect to the clearance height. The flow phenomena responsible for this detected performance behavior are exposed in Part II, where the results of detailed measurements with pressure probes at diffuser exit and particle image velocimetry (PIV) measurements conducted inside the diffuser channel are discussed. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”


Author(s):  
Mingyang Yang ◽  
Ricardo Martinez-Botas ◽  
Yangjun Zhang ◽  
Xinqian Zheng ◽  
Takahiro Bamba ◽  
...  

Large feasible operation range is a challenge for high pressure ratio centrifugal compressor of turbocharger in vehicle engine. Self-Recycling-Casing-Treatment (SRCT) is a widely used flow control method to enlarge the range for this kind of compressor. This paper investigates the influence of symmetrical/asymmetrical SRCT (ASRCT) on the stability of a high pressure ratio centrifugal compressor by experimental testing and numerical simulation. Firstly, the performance of the compressor with/without SRCT is tested is measured investigate the influence of flow distortion on the stability of compressor as well as the numerical method validation. Then detailed flow field investigation is conducted by experimental measurement and the numerical method to unveil the reasons for stability enhancement by symmetrical/asymmetrical SRCT. Results show that static pressure distortion at impeller outlet caused by the volute can make passages be confronted with flow distortion less stable than others because of their larger positive slope of T-S pressure ratio performance at small flow rate. SRCT can depress the flow distortion and reduce the slope by non-uniform recycling flow rate at impeller inlet. Moreover, ASRCT can redistribute the recycling flow in circumferential direction according to the asymmetric geometries. When the largest recycling flow rate is imposed on the passage near the distorted static pressure, the slope will be the most effectively reduced. Therefore, the stability is effectively enhanced by the optimized recycling flow device.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Antonios Fatsis ◽  
Nikolaos Vlachakis ◽  
George Leontis

Abstract Centrifugal compressor performance map prediction is of primary importance for safe and effective operation of turbochargers. This article is a contribution on compressor map prediction using empirical relations based on automotive turbocharger manufacturers’ performance maps. The present method evaluates the minimum and the maximum air flow rates, as well as the maximum compressor pressure ratio by original empirical equations exploiting impeller geometrical data. Newly introduced equations based on the mass flows and the maximum pressure ratio acquired above provide the compressor characteristic lines. The method is validated by applying it to various commercial automotive turbochargers with known performance maps from their manufacturers. At intermediate values of impeller speed, where the turbocharger is expected to match the engine, the computed compressor map agrees to the manufacturer’s data, while, differences are observed at the maximum impeller speed line. From the cases examined, it can be stated that the present model can be applied to predict small diameter, high rotational speed compressor performance, particularly at the high efficiency region that the turbocharger is supposed to match the IC engine.


Author(s):  
Michael M. Cui

To reduce vibration and noise level, the impeller and diffuser blade numbers inside an industrial compressor are typically chosen without common divisors. The shapes of volutes or collectors in these compressors are also not axis-symmetric. When impeller blades pass these asymmetric structures, the flow field in the compressor is time-dependent and three-dimensional. To obtain a fundamental physical understanding of these three-dimensional unsteady flow fields and assess their impact on the compressor performance, the flow field inside the compressors needs to be studied as a whole to include asymmetric and unsteady interaction between the compressor components. In current study, a unified three-dimensional numerical model was built for a transonic centrifugal compressor including impeller, diffusers, and volute. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was simulated with a Navier-Stokes solver using the k-ε turbulent model. The overall performance parameters are obtained by integrating the field quantities. Both unsteady flow field and overall performance are analyzed comparatively for each component. The compressor was tested in a water chiller system instrumented to obtain both overall performance data and local flow field quantities. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow field quantities is defined. The methodology developed and data obtained in these studies can be applied to centrifugal compressor design and optimization.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
George A. Christou ◽  
Choon S. Tan ◽  
Borislav T. Sirakov ◽  
Vai-Man Lei ◽  
Giuseppe Alescio

This paper presents an investigation of the effects of ported shroud (PS) self-recirculating casing treatment used in turbocharger centrifugal compressors for increasing the operable range. The investigation consists of computing three-dimensional flow in a representative centrifugal compressor with and without PS at various levels of approximations in flow physics and geometrical configuration; this provides an enabler for establishing the causal link between PS flow effects and compressor performance changes. It is shown that the main flow path perceives the PS flow as a combination of flow actuations that include injection and removal of mass flow and injection of axial momentum and tangential momentum. A computational model in which the presence of the PS is replaced by imposed boundary conditions (BCs) that reflect the individual flow actuations has thus been formulated and implemented. The removal of a fraction of the inducer mass flow has been determined to be the dominant flow actuation in setting the performance of PS compressors. Mass flow removal reduces the flow blockage associated with the impeller tip leakage flow and increases the diffusion in the main flow path. Adding swirl to the injected flow in the direction opposite to the wheel rotation results in an increase of the stagnation pressure ratio and a decrease of the efficiency. The loss generation in the flow path has been defined to rationalize efficiency changes associated with PS compressor operation.


Sign in / Sign up

Export Citation Format

Share Document