scholarly journals Living on the Edge: Protective Mechanisms Underlying Thermal Tolerance in High Latitude Symbiodinium spp.

2021 ◽  
Author(s):  
◽  
Stefanie Pontasch

<p>The association between symbiotic dinoflagellates (Symbiodinium spp.) and corals extends to subtropical and temperate regions, where sea surface temperatures (SSTs) are generally lower than in the tropics and can vary substantially over the course of the year due to seasonal changes. These high latitude coral-dinoflagellate symbioses might be better able to withstand thermal variability and might be particularly well equipped to cope with lower SSTs compared to their tropical relatives. The aim of this thesis was to analyze the cellular mechanisms that underlie heat and/or cold tolerance in a range of reef-building corals (Acropora yongei, Acropora solitariensis, Isopora palifera, Pocillopora damicornis, Porites heronensis and Stylophora sp.), as well as the symbiotic sea anemone Entacmaea quadricolor. In particular, the study focussed on protective mechanisms in their dinoflagellate symbionts as a potential determinant of thermal sensitivity (i.e. bleaching) or resistance of the intact symbiosis. High latitude reef-building corals were analyzed at the world’s southernmost coral reef at Lord Howe Island, while E. quadricolor was sampled at the subtropical coral community at North Solitary Island; both sites are located in New South Wales, Australia. The specific objectives were to assess the roles of: (1) xanthophyll deepoxidation; (2) thylakoid fatty acid composition; (3) Symbiodinium superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity; and (4) D1 repair on the photophysiology, bleaching susceptibility and survivorship of a range of high-latitude coral-Symbiodinium associations from Lord Howe Island when exposed to elevated or decreased temperature. Furthermore, I aimed to: (5) characterise Symbiodinium diversity in the anemone E. quadricolor on the west coast of Australia; and (6) measure the dynamics of Symbiodinium ITS2 populations and SOD activity in two E. quadricolor phenotypes (green and pink colour phenotypes) in response to elevated temperature. I showed that thermal responses in high latitude corals and their dinoflagellate symbionts are highly variable, depending on host species (or phenotype) and Symbiodinium genotype, and that the activation of protective mechanisms in Symbiodinium was not necessarily correlated with sub-lethal bleaching susceptibility or survivorship of their coral hosts. More specifically: (1) In response to short-term heat stress and cold stress, xanthophyll de-epoxidation increased in some but not all bleaching susceptible (e.g. P. damicornis) and bleaching tolerant (P. heronensis) corals; (2) overall unsaturated thylakoid fatty acids increased in symbionts of a bleaching tolerant coral association, yet was not correlated with PSII photochemical efficiency; and (3) SOD and APX activity remained unchanged in the majority of Symbiodinium types regardless of bleaching susceptibility of the coral host, but decreased in bleaching susceptible Pocillopora damicornis when exposed to short-term heat stress. Elevated temperatures resulted in enhanced D1 turnover in two warm-water bleaching susceptible Symbiodinium-host combinations; however a direct link between increased dependence on D1 turnover and bleaching susceptibility was not demonstrated. From the results obtained it seems unlikely that the specific cellular adaptations in Symbiodinium alone determine the tolerance of Lord Howe corals to thermal variations. In contrast, the results highlight the significance of the particular host-symbiont combination and it appears that the host is important in determining, at least in part, the thermal response of the coral. Additionally, this study revealed a high diversity of Symbiodinium ITS2 (internal transcribed spacer 2) types in E. quadricolor from five locations on the west coast of Australia. E. quadricolor predominantly associated with six types of clade C (four of which were novel) and most anemones harboured multiple types simultaneously. At North Solitary Island, anemones simultaneously harboured Symbiodinium C25 and C3.25 (a novel variant of C3). Experimentally, I showed that anemones shuffled the relative proportions of C25 and C3.25 in response to elevated temperature, but not in both anemone colour phenotypes analyzed. Furthermore, baseline photobiological characteristics were distinct in the two different anemone colour morphs but were not correlated with the ratio of Symbiodinium C25 to C3.25, suggesting that host mechanisms such as pigmentation were involved in regulating light utilization by the symbionts. My hypothesis that symbiont shuffling was related to SOD activity, as such that those symbionts with enhanced SOD activity and increased capability to scavenge superoxide anion would increase in relative abundance in response to short-term heat stress, could not be proved. In summary, this thesis provides detailed information on some key cellular mechanisms that could underpin thermal sensitivity and resistance in high latitude Symbiodinium, and most importantly highlights the significance of the host-symbiont combination in determining the response to thermal stress. The various mechanistic findings described here further our understanding of the coral bleaching process in general and particularly give insight into physiological and cellular responses to coldwater stress in reef-building corals at high-latitude sites. The results of this thesis indicate that in light of ongoing climate change, as episodes of cold-water and warm-water anomalies will become more frequent, branching corals such as Acropora yongei or Pocillopora damicornis and their symbionts will experience physiological stress more frequently than massive species such as Porites heronensis. This might have profound impacts on the long-term stability and species composition of high latitude coral reefs.</p>

2021 ◽  
Author(s):  
◽  
Stefanie Pontasch

<p>The association between symbiotic dinoflagellates (Symbiodinium spp.) and corals extends to subtropical and temperate regions, where sea surface temperatures (SSTs) are generally lower than in the tropics and can vary substantially over the course of the year due to seasonal changes. These high latitude coral-dinoflagellate symbioses might be better able to withstand thermal variability and might be particularly well equipped to cope with lower SSTs compared to their tropical relatives. The aim of this thesis was to analyze the cellular mechanisms that underlie heat and/or cold tolerance in a range of reef-building corals (Acropora yongei, Acropora solitariensis, Isopora palifera, Pocillopora damicornis, Porites heronensis and Stylophora sp.), as well as the symbiotic sea anemone Entacmaea quadricolor. In particular, the study focussed on protective mechanisms in their dinoflagellate symbionts as a potential determinant of thermal sensitivity (i.e. bleaching) or resistance of the intact symbiosis. High latitude reef-building corals were analyzed at the world’s southernmost coral reef at Lord Howe Island, while E. quadricolor was sampled at the subtropical coral community at North Solitary Island; both sites are located in New South Wales, Australia. The specific objectives were to assess the roles of: (1) xanthophyll deepoxidation; (2) thylakoid fatty acid composition; (3) Symbiodinium superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity; and (4) D1 repair on the photophysiology, bleaching susceptibility and survivorship of a range of high-latitude coral-Symbiodinium associations from Lord Howe Island when exposed to elevated or decreased temperature. Furthermore, I aimed to: (5) characterise Symbiodinium diversity in the anemone E. quadricolor on the west coast of Australia; and (6) measure the dynamics of Symbiodinium ITS2 populations and SOD activity in two E. quadricolor phenotypes (green and pink colour phenotypes) in response to elevated temperature. I showed that thermal responses in high latitude corals and their dinoflagellate symbionts are highly variable, depending on host species (or phenotype) and Symbiodinium genotype, and that the activation of protective mechanisms in Symbiodinium was not necessarily correlated with sub-lethal bleaching susceptibility or survivorship of their coral hosts. More specifically: (1) In response to short-term heat stress and cold stress, xanthophyll de-epoxidation increased in some but not all bleaching susceptible (e.g. P. damicornis) and bleaching tolerant (P. heronensis) corals; (2) overall unsaturated thylakoid fatty acids increased in symbionts of a bleaching tolerant coral association, yet was not correlated with PSII photochemical efficiency; and (3) SOD and APX activity remained unchanged in the majority of Symbiodinium types regardless of bleaching susceptibility of the coral host, but decreased in bleaching susceptible Pocillopora damicornis when exposed to short-term heat stress. Elevated temperatures resulted in enhanced D1 turnover in two warm-water bleaching susceptible Symbiodinium-host combinations; however a direct link between increased dependence on D1 turnover and bleaching susceptibility was not demonstrated. From the results obtained it seems unlikely that the specific cellular adaptations in Symbiodinium alone determine the tolerance of Lord Howe corals to thermal variations. In contrast, the results highlight the significance of the particular host-symbiont combination and it appears that the host is important in determining, at least in part, the thermal response of the coral. Additionally, this study revealed a high diversity of Symbiodinium ITS2 (internal transcribed spacer 2) types in E. quadricolor from five locations on the west coast of Australia. E. quadricolor predominantly associated with six types of clade C (four of which were novel) and most anemones harboured multiple types simultaneously. At North Solitary Island, anemones simultaneously harboured Symbiodinium C25 and C3.25 (a novel variant of C3). Experimentally, I showed that anemones shuffled the relative proportions of C25 and C3.25 in response to elevated temperature, but not in both anemone colour phenotypes analyzed. Furthermore, baseline photobiological characteristics were distinct in the two different anemone colour morphs but were not correlated with the ratio of Symbiodinium C25 to C3.25, suggesting that host mechanisms such as pigmentation were involved in regulating light utilization by the symbionts. My hypothesis that symbiont shuffling was related to SOD activity, as such that those symbionts with enhanced SOD activity and increased capability to scavenge superoxide anion would increase in relative abundance in response to short-term heat stress, could not be proved. In summary, this thesis provides detailed information on some key cellular mechanisms that could underpin thermal sensitivity and resistance in high latitude Symbiodinium, and most importantly highlights the significance of the host-symbiont combination in determining the response to thermal stress. The various mechanistic findings described here further our understanding of the coral bleaching process in general and particularly give insight into physiological and cellular responses to coldwater stress in reef-building corals at high-latitude sites. The results of this thesis indicate that in light of ongoing climate change, as episodes of cold-water and warm-water anomalies will become more frequent, branching corals such as Acropora yongei or Pocillopora damicornis and their symbionts will experience physiological stress more frequently than massive species such as Porites heronensis. This might have profound impacts on the long-term stability and species composition of high latitude coral reefs.</p>


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Jang-Hoon Jo ◽  
Jalil Ghassemi Nejad ◽  
Dong-Qiao Peng ◽  
Hye-Ran Kim ◽  
Sang-Ho Kim ◽  
...  

This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1912
Author(s):  
Aleksander Yevtushenko ◽  
Katarzyna Topczewska ◽  
Michal Kuciej

An algorithm to determine the maximum temperature of brake systems during repetitive short-term (RST) braking mode has been proposed. For this purpose, the intermittent mode of braking was given in the form of a few cyclic stages consisting of subsequent braking and acceleration processes. Based on the Chichinadze’s hypothesis of temperature summation, the evolutions of the maximum temperature during each cycle were calculated as the sum of the mean temperature on the nominal contact surface of the friction pair elements and temperature attained on the real contact areas (flash temperature). In order to find the first component, the analytical solution to the one-dimensional thermal problem of friction for two semi-spaces taking into account frictional heat generation was adapted. To find the flash temperature, the solution to the problem for the semi-infinite rod sliding with variable velocity against a smooth surface was used. In both solutions, the temperature-dependent coefficient of friction and thermal sensitivity of materials were taken into account. Numerical calculations were carried out for disc and drum brake systems. The obtained temporal variations of sliding velocity, friction power and temperature were investigated on each stage of braking. It was found that the obtained results agree well with the corresponding data established by finite element and finite-difference methods.


Data in Brief ◽  
2020 ◽  
Vol 28 ◽  
pp. 105004
Author(s):  
Jemaa Essemine ◽  
Jikai Li ◽  
Genyun Chen ◽  
Mingnan Qu
Keyword(s):  

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Isabella Loughland ◽  
Alexander Little ◽  
Frank Seebacher

Abstract Background Thermal plasticity is pivotal for evolution in changing climates and in mediating resilience to its potentially negative effects. The efficacy to respond to environmental change depends on underlying mechanisms. DNA methylation induced by DNA methyltransferase 3 enzymes in the germline or during early embryonic development may be correlated with responses to environmental change. This developmental plasticity can interact with reversible acclimation within adult organisms, which would increase the speed of response and could alleviate potential mismatches between parental or early embryonic environments and those experienced at later life stages. Our aim was to determine whether there is a causative relationship between DNMT3 enzyme and developmental thermal plasticity and whether either or both interact with short-term acclimation to alter fitness and thermal responses in zebrafish (Danio rerio). Results We developed a novel DNMT3a knock-out model to show that sequential knock-out of DNA methyltransferase 3a isoforms (DNMT3aa−/− and DNMT3aa−/−ab−/−) additively decreased survival and increased deformities when cold developmental temperatures in zebrafish offspring mismatched warm temperatures experienced by parents. Interestingly, short-term cold acclimation of parents before breeding rescued DNMT3a knock-out offspring by restoring survival at cold temperatures. DNMT3a knock-out genotype interacted with developmental temperatures to modify thermal performance curves in offspring, where at least one DNMT3a isoform was necessary to buffer locomotion from increasing temperatures. The thermal sensitivity of citrate synthase activity, an indicator of mitochondrial density, was less severely affected by DNMT3a knock-out, but there was nonetheless a significant interaction between genotype and developmental temperatures. Conclusions Our results show that DNMT3a regulates developmental thermal plasticity and that the phenotypic effects of different DNMT3a isoforms are additive. However, DNMT3a interacts with other mechanisms, such as histone (de)acetylation, induced during short-term acclimation to buffer phenotypes from environmental change. Interactions between these mechanisms make phenotypic compensation for climate change more efficient and make it less likely that thermal plasticity incurs a cost resulting from environmental mismatches.


1998 ◽  
Vol 66 (2) ◽  
pp. 431-440 ◽  
Author(s):  
A.-H. Tauson ◽  
A. Chwalibog ◽  
J. Ludvigsen ◽  
K. Jakobsen ◽  
G. Thorbek

AbstractThe effects of short-term exposure to high ambient temperatures on gas exchange, heat production (HE), respiration rate (RR) and rectal temperature were evaluated individually with boars of approximately 100 kg live weight. The boars were of different breeds with four of Yorkshire (YS), eight of Danish Landrace (DL), out of which three were found stress susceptible by the halothane test (DLH+), eight of Duroc (DR) and eight of Hampshire (HS) breeds. After 1 h rest in the respiration chamber at 17·0°C the gas exchange measurements started with al-h basal period at 17 °C, followed by 2h of heating during which temperature increased to 35·0 °C (period I) and then further to 39·7X1 (period II). Then cooling of the chamber started, and after 1 h (period III) temperature had decreased to 21·8°C, and after the 2nd h of cooling (period IV) temperature was 18·2 °C. The gas exchange was measured for each hour from 09.00 h (basal period) until 14.00 h (period IV). RR was recorded every 15 min. Rectal temperatures were measured when the animals were removed from the chamber. The gas exchange and HE increased slowly during period I but rapidly in period II, followed by decreasing values in the cooling periods. HS and DLH+ had considerably higher gas exchange and HE than other breeds in these two periods and the values remained high during period III. In period IV all breeds had gas exchange rates and HE below those of the basal period. RR increased slightly in period I and then a sharp increase followed during period II. Maximum RR was recorded in period III with an average of 183 breaths per min for all breeds. RR increased earlier and more steeply in HS and reached the highest mean value of 236 breaths per min. Four HS boars salivated heavily during heat stress and rectal temperatures of these animals were 39·7 °C when removed from the chamber compared with close to 39·0 °C for all other breeds. It was concluded that there were considerable breed differences in response to heat stress and that DLH+ and HS were more severely stressed than boars ofYS, DL and DR.


2021 ◽  
Vol 26 (4) ◽  
pp. 713-723
Author(s):  
Wei Zhen Li ◽  
Hao Long Li ◽  
Zi Kun Guo ◽  
Su Qin Shang

The predatory mite Neoseiulus barkeri (Acari: Phytoseiidae), which is one of the best natural enemies, has been used as a biological control agent against multiple insect pests, such as spider mite, Tetranychus urticae and thrips. Its growth and development were affected by the environmental temperature changes. This study was conducted to evaluate the hatching rate of the eggs and the immature developmental times of N. barkeri after incubation of the eggs under heat stress at 38, 40 and 42℃, 85% ± 5% RH and a 16h:8h light: dark (L:D) photoperiod for 2, 4 and 6h. After adult females emerged, they were treated under the same conditions again, and the parameters such as oviposition period, fecundity and female longevity were observed. The results showed that with the increase of the temperature and the extension of the duration of the heat stress, the hatching rate was lower. The eggs treated at 42℃ for 2h or more could not hatch, and the developmental duration of each immature stage showed a trend of decreasing at first and then increasing. The fastest development was observed after incubation of eggs at 40℃ for 2h, and the shortest developmental duration was 4.60d. Under the condition of 38℃, the oviposition period and life span of adult females were shortened with the extension of treatment time, and the fecundity decreased at first and then increased. At 40℃, the fecundity, oviposition period and longevity of adult females showed a trend of gradual increase with the extension of treatment time. The shortest oviposition period, the lowest fecundity and the shortest life span of adult females were 12.14d, 18.92 eggs and 16.65d, respectively after incubation of eggs at 40℃, for 2h. Therefore, the short-term heat stress had a significant effect on the hatching rate and the duration of the immature stage, and also had a negative effect on the fecundity, oviposition period and longevity of adult females. In rearing and field release, heat stress should be avoided as much as possible to achieve the best predation and control effect of N. barkeri.


1998 ◽  
Vol 84 (5) ◽  
pp. 1731-1739 ◽  
Author(s):  
Stephen S. Cheung ◽  
Tom M. McLellan

—The purpose of the present study was to determine the separate and combined effects of aerobic fitness, short-term heat acclimation, and hypohydration on tolerance during light exercise while wearing nuclear, biological, and chemical protective clothing in the heat (40°C, 30% relative humidity). Men who were moderately fit [(MF); <50 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 7] and highly fit [(HF); >55 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 8] were tested while they were euhydrated or hypohydrated by ∼2.5% of body mass through exercise and fluid restriction the day preceding the trials. Tests were conducted before and after 2 wk of daily heat acclimation (1-h treadmill exercise at 40°C, 30% relative humidity, while wearing the nuclear, biological, and chemical protective clothing). Heat acclimation increased sweat rate and decreased skin temperature and rectal temperature (Tre) in HF subjects but had no effect on tolerance time (TT). MF subjects increased sweat rate but did not alter heart rate, Tre, or TT. In both MF and HF groups, hypohydration significantly increased Tre and heart rate and decreased the respiratory exchange ratio and the TT regardless of acclimation state. Overall, the rate of rise of skin temperature was less, while ΔTre, the rate of rise of Tre, and the TT were greater in HF than in MF subjects. It was concluded that exercise-heat tolerance in this uncompensable heat-stress environment is not influenced by short-term heat acclimation but is significantly improved by long-term aerobic fitness.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jay J. Minuti ◽  
Charlee A. Corra ◽  
Brian S. Helmuth ◽  
Bayden D. Russell

The ability of an organism to alter its physiology in response to environmental conditions offers a short-term defense mechanism in the face of weather extremes resulting from climate change. These often manifest as multiple, interacting drivers, especially pH and temperature. In particular, decreased pH can impose constraints on the biological mechanisms which define thermal limits by throwing off energetic equilibrium and diminishing physiological functions (e.g., in many marine ectotherms). For many species, however, we do not have a detailed understanding of these interactive effects, especially on short-term acclimation responses. Here, we investigated the metabolic plasticity of a tropical subtidal gastropod (Trochus maculatus) to increased levels of CO2 (700 ppm) and heating (+3°C), measuring metabolic performance (Q10 coefficient) and thermal sensitivity [temperature of maximum metabolic rate (TMMR), and upper lethal temperature (ULT)]. Individuals demonstrated metabolic acclimation in response to the stressors, with TMMR increasing by +4.1°C under higher temperatures, +2.7°C under elevated CO2, and +4.4°C under the combined stressors. In contrast, the ULT only increased marginally in response to heating (+0.3°C), but decreased by −2.3°C under CO2, and −8.7°C under combined stressors. Therefore, although phenotypic plasticity is evident with metabolic acclimation, acute lethal temperature limits seem to be less flexible during short-term acclimation.


Sign in / Sign up

Export Citation Format

Share Document