scholarly journals Ultrasmooth thin film and nano-scale structure fabrication to extend the bounds of optical microscopy

2021 ◽  
Author(s):  
◽  
Eden Rafealov

<p>Plasmonic devices including superlenses, hyperlenses, and far-field superlenses are specially fabricated elements which can improve the resolution of optical microscopy past inherent theoretical limits. However, their fabrication is extremely difficult as they often require ultrasmooth thin films and finely structured silver (Ag). While Ag has an ideal response for these types of lenses, its fabrication in such devices is challenging. Hence, this thesis investigates viable methods of producing ultrasmooth Ag thin films and nano-scale Ag features in order to advance research in plasmonic devices.  Optimum plasmon response requires the fabrication of ultrasmooth thin silver films, which presents several challenges, such as high surface roughness and high optical loss. Thin 1 nm seed layers were fabricated in advance of Ag layers in order to improve the surface properties of Ag. We found that a 1 nm germanium (Ge) seed layer results in a 400% reduction in surface roughness down to 0.64 nm(RMS), but offers increased optical loss by about 3% over Ag alone. However, an inert atmosphere high temperature anneal of a Ge/Ag stack results in preferential grain growth, further reducing surface roughness to 0.61 nm(RMS), while also improving transmission by up to 14% over Ag alone. Similar procedures were conducted on copper (Cu) and silver oxide (AgOx) seed layers. While Cu results in very smooth Ag films of 0.61 nm(RMS) for films < 10 nm thick, performance deteriorates at Ag thicknesses above 10 nm, which are preferred for the plasmonic applications identified above. Furthermore, AgOx produces very rough surfaces on substrates which are amorphous–a property which is essential for our use. However, AgOx on crystalline substrates produced smooth surfaces of 0.3 nm(RMS) and may be useful for other plasmonic applications.  Interference lithography (IL) was selected as the method to create the periodic nano-scale structures. The IL equipment was modified with the addition of bandpass light filters, 5 μm pinhole Fourier filters, and air vortex shields. Also, elimination of both external vibration and time-dependant vacuum lines are included. With this IL environment, we were able to produce periodic gratings anywhere from 1 μm-300 nm pitch through rigorous optimisation of photoresist, exposure, and development processes. Ultimately, this lead to the fabrication of high contrast, 200 nm period gratings for use in a far-field superlens. The designs and procedures outline within will result in increased performance and production of far-field superlenses with limited equipment, therefore facilitating increased performance of optical microscopes.</p>

2021 ◽  
Author(s):  
◽  
Eden Rafealov

<p>Plasmonic devices including superlenses, hyperlenses, and far-field superlenses are specially fabricated elements which can improve the resolution of optical microscopy past inherent theoretical limits. However, their fabrication is extremely difficult as they often require ultrasmooth thin films and finely structured silver (Ag). While Ag has an ideal response for these types of lenses, its fabrication in such devices is challenging. Hence, this thesis investigates viable methods of producing ultrasmooth Ag thin films and nano-scale Ag features in order to advance research in plasmonic devices.  Optimum plasmon response requires the fabrication of ultrasmooth thin silver films, which presents several challenges, such as high surface roughness and high optical loss. Thin 1 nm seed layers were fabricated in advance of Ag layers in order to improve the surface properties of Ag. We found that a 1 nm germanium (Ge) seed layer results in a 400% reduction in surface roughness down to 0.64 nm(RMS), but offers increased optical loss by about 3% over Ag alone. However, an inert atmosphere high temperature anneal of a Ge/Ag stack results in preferential grain growth, further reducing surface roughness to 0.61 nm(RMS), while also improving transmission by up to 14% over Ag alone. Similar procedures were conducted on copper (Cu) and silver oxide (AgOx) seed layers. While Cu results in very smooth Ag films of 0.61 nm(RMS) for films < 10 nm thick, performance deteriorates at Ag thicknesses above 10 nm, which are preferred for the plasmonic applications identified above. Furthermore, AgOx produces very rough surfaces on substrates which are amorphous–a property which is essential for our use. However, AgOx on crystalline substrates produced smooth surfaces of 0.3 nm(RMS) and may be useful for other plasmonic applications.  Interference lithography (IL) was selected as the method to create the periodic nano-scale structures. The IL equipment was modified with the addition of bandpass light filters, 5 μm pinhole Fourier filters, and air vortex shields. Also, elimination of both external vibration and time-dependant vacuum lines are included. With this IL environment, we were able to produce periodic gratings anywhere from 1 μm-300 nm pitch through rigorous optimisation of photoresist, exposure, and development processes. Ultimately, this lead to the fabrication of high contrast, 200 nm period gratings for use in a far-field superlens. The designs and procedures outline within will result in increased performance and production of far-field superlenses with limited equipment, therefore facilitating increased performance of optical microscopes.</p>


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 413 ◽  
Author(s):  
Robert Müller ◽  
Lilit Ghazaryan ◽  
Paul Schenk ◽  
Sabrina Wolleb ◽  
Vivek Beladiya ◽  
...  

High-density ruthenium (Ru) thin films were deposited using Ru(EtCp)2 (bis(ethylcyclopentadienyl)ruthenium) and oxygen by thermal atomic layer deposition (ALD) and compared to magnetron sputtered (MS) Ru coatings. The ALD Ru film growth and surface roughness show a significant temperature dependence. At temperatures below 200 °C, no deposition was observed on silicon and fused silica substrates. With increasing deposition temperature, the nucleation of Ru starts and leads eventually to fully closed, polycrystalline coatings. The formation of blisters starts at temperatures above 275 °C because of poor adhesion properties, which results in a high surface roughness. The optimum deposition temperature is 250 °C in our tool and leads to rather smooth film surfaces, with roughness values of approximately 3 nm. The ALD Ru thin films have similar morphology compared with MS coatings, e.g., hexagonal polycrystalline structure and high density. Discrepancies of the optical properties can be explained by the higher roughness of ALD films compared to MS coatings. To use ALD Ru for optical applications at short wavelengths (λ = 2–50 nm), further improvement of their film quality is required.


2015 ◽  
Vol 789-790 ◽  
pp. 90-94
Author(s):  
Anderson Dussan ◽  
Heiddy P. Quiroz ◽  
Jorge A. Calderón ◽  
Sandra M. López

Presents a study of optical properties from transmittance measurements as a function of wavelength to CZTSe thin films (Cu2ZnSnSe4) using Bhattacharyya model and basic elements from the Swanepoel theory. The optical constants such as the absorption coefficient (α), the refractive index (n), the extinction coefficient (k) and physical properties such as gap (Eg), the real and imaginary part of the dielectric function (ε1 and ε2) and the film thickness (d), were determined. Gap values between 1.2 and 1.7 eV were obtained for compound when the mass (MX) of ZnSe was varied during the deposition stage. Inhomogeneity and high surface roughness were observed by SEM measurements for all samples. Size grain varying between 458.16 and 630.28 nm were obtained while the ZnSe binary mass varied from 0.171 to 0.153 g. Refractive index and extinction coefficient of Cu2ZnSnSe4 films were obtained for λ = 800 nm. A decrease of ε1 and ε2 was observed as the wavelength increases; it is associated with the presence of binary phases in the XRD patterns.


2013 ◽  
Vol E96.C (3) ◽  
pp. 362-364
Author(s):  
Takeshi FUKUDA ◽  
Kenji TAKAGI ◽  
Norihiko KAMATA ◽  
Jungmyoung JU ◽  
Yutaka YAMAGATA

Nanoscale ◽  
2020 ◽  
Author(s):  
Feifei ZHANG ◽  
Jérôme Plain ◽  
Davy Gerard ◽  
Jérôme Martin

The surface topography is known to play an important role on the near- and far- field optical properties of metallic nanoparticles. In particular, aluminum (Al) nanoparticles are commonly fabricated through...


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takehiko Arai ◽  
Tatsuaki Okada ◽  
Satoshi Tanaka ◽  
Tetsuya Fukuhara ◽  
Hirohide Demura ◽  
...  

AbstractThe thermal infrared imager (TIR) onboard the Hayabusa2 spacecraft performed thermographic observations of the asteroid 162173 Ryugu (1999 JU$$_3$$ 3 ) from June 2018 to November 2019. Our previous reports revealed that the surface of Ryugu was globally filled with porous materials and had high surface roughness. These results were derived from making the observed temperature maps of TIR using a projection method onto the shape model of Ryugu as geometric corrections. The pointing directions of TIR were calculated using an interpolation of data from the SPICE kernels (NASA/NAIF) during the periods when the optical navigation camera (ONC) and the light detection and ranging (LIDAR) observations were performed. However, the mapping accuracy of the observed TIR images was degraded when the ONC and LIDAR were not performed with TIR. Also, the orbital and attitudinal fluctuations of Hayabusa2 increased the error of the temperature maps. In this paper, to solve the temperature image mapping problems, we improved the correction method by fitting all of the observed TIR images with the surface coordinate addressed on the high-definition shape model of Ryugu (SFM 800k v20180804). This correction adjusted the pointing direction of TIR by rotating the TIR frame relative to the Hayabusa2 frame using a least squares fit. As a result, the temperature maps spatially spreading areas were converged within high-resolved $$0.5^\circ$$ 0 . 5 ∘ by $$0.5^\circ$$ 0 . 5 ∘ maps. The estimated thermal inertia, for instance, was approximately 300$$\sim$$ ∼ 350 Jm$$^{-2}$$ - 2 s$$^{-0.5}$$ - 0.5 K$$^{-1}$$ - 1 at the hot area of the Ejima Saxum. This estimation was succeeded in case that the surface topographic features were larger than the pixel scale of TIR. However, the thermal inertia estimation of smooth terrains, such as the Urashima crater, was difficult because of surface roughness effects, where roughness was probably much smaller than the pixel scale of TIR.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2601
Author(s):  
Yue Ba ◽  
Yu Wen ◽  
Shibin Wu

Recent innovations in 3D printing technologies and processes have influenced how landscape products are designed, built, and developed. In landscape architecture, reduced-size models are 3D-printed to replicate full-size structures. However, high surface roughness usually occurs on the surfaces of such 3D-printed components, which requires additional post-treatment. In this work, we develop a new type of landscape design structure based on the fused deposition modeling (FDM) technique and present a laser polishing method for FDM-fabricated polylactic acid (PLA) mechanical components, whereby the surface roughness of the laser-polished surfaces is reduced from over Ra 15 µm to less than 0.25 µm. The detailed results of thermodynamics and microstructure evolution are further analyzed during laser polishing. The stability and accuracy of the results are evaluated based on the standard deviation. Additionally, the superior tensile and flexural properties are examined in the laser-polished layer, in which the ultimate tensile strength (UTS) is increased by up to 46.6% and the flexural strength is increased by up to 74.5% compared with the as-fabricated components. Finally, a real polished landscape model is simulated and optimized using a series of scales.


2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Takafumi Nakano ◽  
Tomoya Higo ◽  
Ayuko Kobayashi ◽  
Shinji Miwa ◽  
Satoru Nakatsuji ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document