scholarly journals Investigating the analgesic properties of Kurkinorin, a novel mu-opioid receptor analogue of Salvinorin A

2021 ◽  
Author(s):  
◽  
Nirajmohan Shivaperumal

<p>Background: The mu-opioid receptor (MOPr) activating drugs such as morphine, fentanyl, etorphine and methadone are used to treat moderate to severe pain. However, their long-term use produces serious adverse effects such as respiratory depression, sedation, tolerance, nausea, dependence, and constipation and this signifies the search for an alternate pain therapeutic agent. Here we report the investigation of antinociceptive and side effect profiles of a structurally unique MOPr-activating drug, kurkinorin from Salvinorin A (Sal A) that was compared with morphine and herkinorin.  Methods: Adult male B6-SJL mice (22-29 g) were used to investigate the antinociceptive effects of kurkinorin, herkinorin and morphine utilising the 50° C warm-water tail-withdrawal assay. The 2% intra-dermal formalin assay was used to evaluate acute nociceptive and inflammatory pain and paw oedema. The side effect profiles were evaluated by measuring core-body temperature and utilising behavioural tests of motor co-ordination (accelerating rotarod test). Kurkinorin’s rewarding properties were assessed using the conditioned place preference (CPP) assay in male Sprague-Dawley rats (240-350 g).  Results: Kurkinorin produced significant antinociceptive effects in the tail-withdrawal assay at both 5 (p<0.01, 10 min, p<0.001, 15-60 min) and 10 mg/kg (p<0.001, 5-90 min, p<0.01, 120 min) and attenuated both nociceptive and inflammatory pain in the 2% intra-dermal formalin model in mice. The analgesic effects of kurkinorin at 10 mg/kg were similar to the analgesic effects of morphine at the same dose. The decrease in pain score in the intra-dermal formalin assay with kurkinorin and morphine produced a corresponding reduction of paw oedema. In comparison, herkinorin had reduced analgesic effects in the tail-withdrawal assay (10 mg/kg, p<0.05, 30 min) and attenuated inflammatory pain in the intra-dermal formalin assay (10 mg/kg, p<0.001) with reduced paw oedema (10 mg/kg, p<0.05). Morphine produced significant motor incoordination effects from 15-60 min post injection whereas kurkinorin produced no significant motor impairment. Kurkinorin and herkinorin (5 mg/kg, i.p) did not produce rewarding effects, whereas morphine produced a significant, rewarding effect in the CPP assay. Kurkinorin produced no change in the core body temperature while morphine significantly reduced the body temperature.  Conclusions: Kurkinorin is central acting and is as potent as morphine in attenuating acute nociceptive and inflammatory pain. It produced no significant sedative and rewarding effects. Therefore, kurkinorin has been identified as a structurally new class of mu-opioid analgesic, displaying improvements compared to morphine.</p>

2021 ◽  
Author(s):  
◽  
Nirajmohan Shivaperumal

<p>Background: The mu-opioid receptor (MOPr) activating drugs such as morphine, fentanyl, etorphine and methadone are used to treat moderate to severe pain. However, their long-term use produces serious adverse effects such as respiratory depression, sedation, tolerance, nausea, dependence, and constipation and this signifies the search for an alternate pain therapeutic agent. Here we report the investigation of antinociceptive and side effect profiles of a structurally unique MOPr-activating drug, kurkinorin from Salvinorin A (Sal A) that was compared with morphine and herkinorin.  Methods: Adult male B6-SJL mice (22-29 g) were used to investigate the antinociceptive effects of kurkinorin, herkinorin and morphine utilising the 50° C warm-water tail-withdrawal assay. The 2% intra-dermal formalin assay was used to evaluate acute nociceptive and inflammatory pain and paw oedema. The side effect profiles were evaluated by measuring core-body temperature and utilising behavioural tests of motor co-ordination (accelerating rotarod test). Kurkinorin’s rewarding properties were assessed using the conditioned place preference (CPP) assay in male Sprague-Dawley rats (240-350 g).  Results: Kurkinorin produced significant antinociceptive effects in the tail-withdrawal assay at both 5 (p<0.01, 10 min, p<0.001, 15-60 min) and 10 mg/kg (p<0.001, 5-90 min, p<0.01, 120 min) and attenuated both nociceptive and inflammatory pain in the 2% intra-dermal formalin model in mice. The analgesic effects of kurkinorin at 10 mg/kg were similar to the analgesic effects of morphine at the same dose. The decrease in pain score in the intra-dermal formalin assay with kurkinorin and morphine produced a corresponding reduction of paw oedema. In comparison, herkinorin had reduced analgesic effects in the tail-withdrawal assay (10 mg/kg, p<0.05, 30 min) and attenuated inflammatory pain in the intra-dermal formalin assay (10 mg/kg, p<0.001) with reduced paw oedema (10 mg/kg, p<0.05). Morphine produced significant motor incoordination effects from 15-60 min post injection whereas kurkinorin produced no significant motor impairment. Kurkinorin and herkinorin (5 mg/kg, i.p) did not produce rewarding effects, whereas morphine produced a significant, rewarding effect in the CPP assay. Kurkinorin produced no change in the core body temperature while morphine significantly reduced the body temperature.  Conclusions: Kurkinorin is central acting and is as potent as morphine in attenuating acute nociceptive and inflammatory pain. It produced no significant sedative and rewarding effects. Therefore, kurkinorin has been identified as a structurally new class of mu-opioid analgesic, displaying improvements compared to morphine.</p>


2012 ◽  
Vol 26 (2) ◽  
Author(s):  
Joanna Pawlak ◽  
Paweł Zalewski ◽  
Jacek J. Klawe ◽  
Monika Zawadka ◽  
Anna Bitner ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazuyuki Miyamoto ◽  
Keisuke Suzuki ◽  
Hirokazu Ohtaki ◽  
Motoyasu Nakamura ◽  
Hiroki Yamaga ◽  
...  

Abstract Background Heatstroke is associated with exposure to high ambient temperature (AT) and relative humidity (RH), and an increased risk of organ damage or death. Previously proposed animal models of heatstroke disregard the impact of RH. Therefore, we aimed to establish and validate an animal model of heatstroke considering RH. To validate our model, we also examined the effect of hydration and investigated gene expression of cotransporter proteins in the intestinal membranes after heat exposure. Methods Mildly dehydrated adult male C57/BL6J mice were subjected to three AT conditions (37 °C, 41 °C, or 43 °C) at RH > 99% and monitored with WetBulb globe temperature (WBGT) for 1 h. The survival rate, body weight, core body temperature, blood parameters, and histologically confirmed tissue damage were evaluated to establish a mouse heatstroke model. Then, the mice received no treatment, water, or oral rehydration solution (ORS) before and after heat exposure; subsequent organ damage was compared using our model. Thereafter, we investigated cotransporter protein gene expressions in the intestinal membranes of mice that received no treatment, water, or ORS. Results The survival rates of mice exposed to ATs of 37 °C, 41 °C, and 43 °C were 100%, 83.3%, and 0%, respectively. From this result, we excluded AT43. Mice in the AT 41 °C group appeared to be more dehydrated than those in the AT 37 °C group. WBGT in the AT 41 °C group was > 44 °C; core body temperature in this group reached 41.3 ± 0.08 °C during heat exposure and decreased to 34.0 ± 0.18 °C, returning to baseline after 8 h which showed a biphasic thermal dysregulation response. The AT 41 °C group presented with greater hepatic, renal, and musculoskeletal damage than did the other groups. The impact of ORS on recovery was greater than that of water or no treatment. The administration of ORS with heat exposure increased cotransporter gene expression in the intestines and reduced heatstroke-related damage. Conclusions We developed a novel mouse heatstroke model that considered AT and RH. We found that ORS administration improved inadequate circulation and reduced tissue injury by increasing cotransporter gene expression in the intestines.


2021 ◽  
Vol 7 (1) ◽  
pp. e000907
Author(s):  
Giovanni Polsinelli ◽  
Angelo Rodio ◽  
Bruno Federico

IntroductionThe measurement of heart rate is commonly used to estimate exercise intensity. However, during endurance performance, the relationship between heart rate and oxygen consumption may be compromised by cardiovascular drift. This physiological phenomenon mainly consists of a time-dependent increase in heart rate and decrease in systolic volume and may lead to overestimate absolute exercise intensity in prediction models based on heart rate. Previous research has established that cardiovascular drift is correlated to the increase in core body temperature during prolonged exercise. Therefore, monitoring body temperature during exercise may allow to quantify the increase in heart rate attributable to cardiovascular drift and to improve the estimate of absolute exercise intensity. Monitoring core body temperature during exercise may be invasive or inappropriate, but the external auditory canal is an easily accessible alternative site for temperature measurement.Methods and analysisThis study aims to assess the degree of correlation between trends in heart rate and in ear temperature during 120 min of steady-state cycling with intensity of 59% of heart rate reserve in a thermally neutral indoor environment. Ear temperature will be monitored both at the external auditory canal level with a contact probe and at the tympanic level with a professional infrared thermometer.Ethics and disseminationThe study protocol was approved by an independent ethics committee. The results will be submitted for publication in academic journals and disseminated to stakeholders through summary documents and information meetings.


Sign in / Sign up

Export Citation Format

Share Document