scholarly journals Macroinvertebrate community responses to mammal control - Evidence for top-down trophic effects

2021 ◽  
Author(s):  
◽  
Olivia Edith Vergara Parra

<p>New Zealand’s invertebrates are characterised by extraordinary levels of endemism and a tendency toward gigantism, flightlessness and longevity. These characteristics have resulted in a high vulnerability to introduced mammals (i.e. possums, rats, mice, and stoats) which are not only a serious threat to these invertebrates, but have also altered food web interactions over the past two-hundred years. The establishment of fenced reserves and the aerial application of 1080 toxin are two methods of mammal control used in New Zealand to exclude and reduce introduced mammals, respectively. Responses of ground-dwelling invertebrates to mammal control, including a consideration of trophic cascades and their interactions, remain unclear. However, in this thesis, I aimed to investigate how changes in mammal communities inside and outside a fenced reserve (ZEALANDIA, Wellington) and before-and-after the application of 1080 in Aorangi Forest, influence the taxonomic and trophic abundance, body size and other traits of ground-dwelling invertebrates on the mainland of New Zealand. I also tested for effects of habitat variables (i.e. vegetation and elevation), fluctuations in predator populations (i.e. mice, rats and birds) and environmental variables (i.e. temperature). Additionally, I investigated how squid-bait suspended over pitfall traps influenced the sampling of ground weta and other invertebrates in Aorangi and Remutaka Forests. Contrary to my expectations, there were no differences in abundance or body size of invertebrates within ZEALANDIA (which excludes introduced mammals except mice) relative to the outside, except for Staphylinidae which were more abundant outside the fence. Differences in the agents of predation pressure from mainly mammals, outside the reserve, to mostly birds within ZEALANDIA, but potentially little change in net predation pressure, may explain this apparent similarity in ground-invertebrates. No differences in invertebrate communities were also recorded in the 1080-treated area (Aorangi Forest) after one year of the aerial application of 1080. It could imply that the use of this toxin does not produce any apparent detriment to invertebrates at a population level. The application of 1080 usually leads to changes in insectivorous predator (birds and introduced mammals) dynamics in the short-term mainly due to meso-predator release, which may affect invertebrate communities as a result. Temporal and spatial variation of different components of the ecosystem appear to be more significant drivers of invertebrate dynamics, than 1080 mammal control. For example, rats (Rattus spp.) limited the abundance and body size of large invertebrates (i.e. ground weta, cave weta and spiders) in Aorangi and Remutaka Forests. Smaller invertebrates such as gastropods, weevils and springtails were affected directly by spatial factors such as vegetation, while dung beetles responded to an increase in mouse density. Based on a comparison of pitfall trapping methods, I suggest the use of squid baiting as an effective method for sampling ground weta (Hemiandrus spp.) in New Zealand, as they responded positively to these baits. Finally, I propose ground weta and spiders as suitable indicators of rat predation, as they are abundant in forests and easily recognised by non-specialists, and they respond negatively to rat densities. This thesis underlines the importance of studying the effect of introduced mammal dynamics derived from mammal control in an ecosystem approach, to achieve conservation goals both in the short- and long-term, especially considering the New Zealand Government’s ambitious goal of eradicating three of the most prevalent mammal predators (rats, possums and stoats) by 2050.</p>

2021 ◽  
Author(s):  
◽  
Olivia Edith Vergara Parra

<p>New Zealand’s invertebrates are characterised by extraordinary levels of endemism and a tendency toward gigantism, flightlessness and longevity. These characteristics have resulted in a high vulnerability to introduced mammals (i.e. possums, rats, mice, and stoats) which are not only a serious threat to these invertebrates, but have also altered food web interactions over the past two-hundred years. The establishment of fenced reserves and the aerial application of 1080 toxin are two methods of mammal control used in New Zealand to exclude and reduce introduced mammals, respectively. Responses of ground-dwelling invertebrates to mammal control, including a consideration of trophic cascades and their interactions, remain unclear. However, in this thesis, I aimed to investigate how changes in mammal communities inside and outside a fenced reserve (ZEALANDIA, Wellington) and before-and-after the application of 1080 in Aorangi Forest, influence the taxonomic and trophic abundance, body size and other traits of ground-dwelling invertebrates on the mainland of New Zealand. I also tested for effects of habitat variables (i.e. vegetation and elevation), fluctuations in predator populations (i.e. mice, rats and birds) and environmental variables (i.e. temperature). Additionally, I investigated how squid-bait suspended over pitfall traps influenced the sampling of ground weta and other invertebrates in Aorangi and Remutaka Forests. Contrary to my expectations, there were no differences in abundance or body size of invertebrates within ZEALANDIA (which excludes introduced mammals except mice) relative to the outside, except for Staphylinidae which were more abundant outside the fence. Differences in the agents of predation pressure from mainly mammals, outside the reserve, to mostly birds within ZEALANDIA, but potentially little change in net predation pressure, may explain this apparent similarity in ground-invertebrates. No differences in invertebrate communities were also recorded in the 1080-treated area (Aorangi Forest) after one year of the aerial application of 1080. It could imply that the use of this toxin does not produce any apparent detriment to invertebrates at a population level. The application of 1080 usually leads to changes in insectivorous predator (birds and introduced mammals) dynamics in the short-term mainly due to meso-predator release, which may affect invertebrate communities as a result. Temporal and spatial variation of different components of the ecosystem appear to be more significant drivers of invertebrate dynamics, than 1080 mammal control. For example, rats (Rattus spp.) limited the abundance and body size of large invertebrates (i.e. ground weta, cave weta and spiders) in Aorangi and Remutaka Forests. Smaller invertebrates such as gastropods, weevils and springtails were affected directly by spatial factors such as vegetation, while dung beetles responded to an increase in mouse density. Based on a comparison of pitfall trapping methods, I suggest the use of squid baiting as an effective method for sampling ground weta (Hemiandrus spp.) in New Zealand, as they responded positively to these baits. Finally, I propose ground weta and spiders as suitable indicators of rat predation, as they are abundant in forests and easily recognised by non-specialists, and they respond negatively to rat densities. This thesis underlines the importance of studying the effect of introduced mammal dynamics derived from mammal control in an ecosystem approach, to achieve conservation goals both in the short- and long-term, especially considering the New Zealand Government’s ambitious goal of eradicating three of the most prevalent mammal predators (rats, possums and stoats) by 2050.</p>


2010 ◽  
Vol 16 (12) ◽  
pp. 1422-1431 ◽  
Author(s):  
Bruce V Taylor ◽  
John F Pearson ◽  
Glynnis Clarke ◽  
Deborah F Mason ◽  
David A Abernethy ◽  
...  

Background: The prevalence of multiple sclerosis (MS) is not uniform, with a latitudinal gradient of prevalence present in most studies. Understanding the drivers of this gradient may allow a better understanding of the environmental factors involved in MS pathogenesis. Method: The New Zealand national MS prevalence study (NZMSPS) is a cross-sectional study of people with definite MS (DMS) (McDonald criteria 2005) resident in New Zealand on census night, 7 March 2006, utilizing multiple sources of notification. Capture—recapture analysis (CRA) was used to estimate missing cases. Results: Of 2917 people with DMS identified, the crude prevalence was 72.4 per 100,000 population, and 73.1 per 100,000 when age-standardized to the European population. CRA estimated that 96.7% of cases were identified. A latitudinal gradient was seen with MS prevalence increasing three-fold from the North (35°S) to the South (48°S). The gradient was non-uniform; females with relapsing—remitting/secondary-progressive (RRMS/SPMS) disease have a gradient 11 times greater than males with primary-progressive MS ( p < 1 × 10-7). DMS was significantly less common among those of Māori ethnicity. Conclusions: This study confirms the presence of a robust latitudinal gradient of MS prevalence in New Zealand. This gradient is largely driven by European females with the RRMS/SPMS phenotype. These results indicate that the environmental factors that underlie the latitudinal gradient act differentially by gender, ethnicity and MS phenotype. A better understanding of these factors may allow more targeted MS therapies aimed at modifiable environmental triggers at the population level.


1993 ◽  
Vol 50 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Mark R. S. Johannes

Aggregations of prey fish, golden shiner (Notemigonus crysoleucas), were examined during 7 yr of predator manipulations in two lakes to determine whether they responded to changes in predation pressure and varied with time-of-day, age, and habitat. Regression analysis was used to examine aggregation in 12 replicate prey densities from two time periods, two ages, two habitats, three sample series, and seven predator densities. Aggregation was assessed as the variance of mean densities for each treatment combination. Multiple regression and ANCOVA analyses indicated that (1) golden shiner aggregated more during day than night, (2) their aggregation was positively related to predator density, (3) young shiner aggregated more than older ones at low predator densities, and (4) aggregation in older shiner was more responsive to increased predator densities than aggregation in younger shiner. These results provide empirical evidence that golden shiner aggregation patterns respond to predation pressure and the response varies with time and age. These results also suggest that variance in net catches can provide an index of fish aggregation and that aggregation observed at the population level is not solely dependent on species and density, but is a behavioural response mediated by several factors including predators.


2018 ◽  
Vol 30 (5) ◽  
pp. 271-277
Author(s):  
Lucas Krüger ◽  
Vitor H. Paiva ◽  
Julia V.G. Finger ◽  
Elisa Petersen ◽  
José C. Xavier ◽  
...  

AbstractLiterature reports that body size can be associated with latitudinal distribution, for instance larger animals inhabit higher latitudes and colder habitats. This rule can be applied for species and populations within a species. The potential influence of body size on non-breeding distribution and habitat use at the intra-population level was investigated for southern giant petrels Macronectes giganteus (Gmelin) from Elephant Island, South Shetland Islands. The non-breeding distribution of 23 individuals was tracked, and total body length, culmen length, wing length, wing load and body mass were measured. Positions of core areas were used to estimate the latitudinal distribution of each individual. Smaller individuals were found to be associated more with lower latitudes, where warmer conditions and more coastal and productive waters prevail, whereas large males were associated more with higher latitudes, with colder conditions near sea ice caps, presumably feeding on carrion or preying on penguins. This association reflects a latitudinal gradient, with smaller individuals positioning themselves towards the north, and larger individuals towards the south. In this case, body size, individual distribution and habitat use were found to be associated, highlighting the importance of studying potential effects of individual body size on the ecology of seabirds.


2020 ◽  
Vol 74 (5) ◽  
pp. 460-466 ◽  
Author(s):  
Victoria Egli ◽  
Matthew Hobbs ◽  
Jordan Carlson ◽  
Niamh Donnellan ◽  
Lisa Mackay ◽  
...  

BackgroundChildren residing in neighbourhoods of high deprivation are more likely to have poorer health, including excess body size. While the availability of unhealthy food outlets are increasingly considered important for excess child body size, less is known about how neighbourhood deprivation, unhealthy food outlets and unhealthy dietary behaviours are interlinked.MethodsThis study involves children aged 8–13 years (n=1029) and resided in Auckland, New Zealand. Unhealthy dietary behaviours (frequency of consumption of unhealthy snacks and drinks) and food purchasing behaviour on the route to and from school were self-reported. Height and waist circumference were measured to calculate waist-to-height ratio (WtHR). Geographic Information Systems mapped neighbourhood deprivation and unhealthy food outlets within individual, child-specific neighbourhood buffer boundaries (800 m around the home and school). Associations between neighbourhood deprivation (calculated using the New Zealand Index of Deprivation 2013), unhealthy food outlets, unhealthy dietary behaviours and WtHR were investigated using structural equation modelling in Mplus V.8.0. Age, sex and ethnicity were included as covariates, and clustering was accounted for at the school level.ResultsStructural equation models showed that unhealthy food outlets were unrelated to unhealthy dietary behaviours (estimate 0.029, p=0.416) and excess body size (estimate −0.038, p=0.400). However, greater neighbourhood deprivation and poorer dietary behaviours (estimate −0.134, p=0.001) were associated with greater WtHR (estimate 0.169, p<0.001).ConclusionExcess child body size is associated with neighbourhood deprivation and unhealthy dietary behaviours but not unhealthy outlet density or location of these outlets near home and school.


1989 ◽  
Vol 67 (11) ◽  
pp. 2841-2849 ◽  
Author(s):  
W. M. Tonn ◽  
C. A. Paszkowski ◽  
I. J. Holopainen

Theoretical analyses have suggested that the magnitude of antipredator responses of prey should be related to the intensity of predation. To examine this proposal at the population level, we removed all fishes from a natural pond in Finland, divided the pond into sections with plastic curtains, and stocked each section with equal populations of crucian carp (Carassius carassius), a common lentic cyprinid. Stocking of perch (Perca fluviatilis) and recolonization by pike (Exos lucius) created a gradient of predation pressure across three sections (I > II > III). Within 1 month, fewer crucian carp, particularly the more vulnerable small fish, remained in section I than in II and III. Crucian carp remaining in section I had higher growth rates and condition factors than fish in sections II and III. Greater proportions of carp were active offshore and during the day in section III, compared with greater inshore and nocturnal activity in sections of higher predator density (I and II). Directly and indirectly, crucian carp did respond differentially to varying intensities of predation under field conditions, although responses were not always strictly proportional to measured levels of predation pressure.


Ecology ◽  
2013 ◽  
Vol 94 (8) ◽  
pp. 1839-1847 ◽  
Author(s):  
Frank A. La Sorte ◽  
Daniel Fink ◽  
Wesley M. Hochachka ◽  
John P. DeLong ◽  
Steve Kelling

Sign in / Sign up

Export Citation Format

Share Document