scholarly journals Inhibition and reaction mechanism of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase: A potential target for novel drug design

2021 ◽  
Author(s):  
◽  
Preeti Kundu

<p>Tuberculosis (TB), which is estimated to affect 2 billion individuals worldwide, is an infection predominately caused by Mycobacterium tuberculosis(M. tuberculosis). Of particular concern is the increasing prevalence of TB, which is becoming resistant to the treatments currently available. Anthranilate phosphoribosyltransferase (AnPRT) catalyses the formation of N-(5’-phosphoribosyl)anthranilate (PRA) from 5-phospho-α-ribose-1-diphosphate (PRPP) and anthranilate and plays an important role in the synthesis of an essential amino acid in M.tuberculosis. A strain with a genetic knockout of the trpD gene, which encodes for the AnPRT enzyme, was unable to cause disease, even in immune-deficient mice. Therefore, this enzyme is a potential drug target for the development of new treatments against TB and other infectious diseases. This research explores the synthesis of different substrates and potential transition state analogues in order to understand catalysis and inhibition of AnPRT enzymes to aid novel drug design. The first part of this study utilises “bianthranilate-like” phosphonate inhibitors that display effective inhibition of the AnPRT enzyme, with the lowest Ki value being 1.3 μM. It was found strong enzymatic inhibition increases with an increased length of the phosphonate linker that occupies multiple anthranilate binding sites within the anthranilate binding channel of the enzyme. Crystal studies of the enzyme in complex with the inhibitors were carried out in order to expose the binding interactions. The second part of this study investigates several new compounds that target the active site of M. tuberculosis AnPRT, based on a virtual screening approach. This approach identified a strong AnPRT inhibitor, which displays an apparent Ki value of 7.0 ± 0.4 μM with respect to both substrates. This study also exposed a conformational change at the active site of the enzyme that occurs on inhibitor binding. The observed conformational changes of the enzyme active site diminish the binding of the substrate PRPP. These pieces of information provide future inhibitor design strategies to aid the development of novel anti-TB agents that target the AnPRT enzyme. To elucidate the reaction mechanism of M. tuberculosis AnPRT, the third part of this study explores the substrate binding sites in detail. This study uses structural analysis, complemented by differential scanning fluorimetry (DSF) and isothermal titration calorimetry (ITC), to reveal detailed information of the substrate and inhibitor binding sites. The final part of this thesis presents the synthesis of various PRPP analogues and potential transition state mimics that were designed based on the likely reaction mechanism of the enzyme. This set of inhibitors includes a number of iminoribitol analogues that were developed to capture the geometry of the flattened ribose ring and include a nitrogen atom within the ring to mimic the positive charge characteristics that are expected in the oxocarbenium-ion-like transition state predicted for M. tuberculosis AnPRT. Additionally, we were able to solve the structure of M. tuberculosis AnPRT in complex with one of the potential transition state mimics, which was observed to bind at the active site of the enzyme. This structure provides new insight into the catalytic mechanism of the enzyme and creates an opportunity to develop more specific inhibitors against the M. tuberculosis AnPRT enzyme.</p>

2021 ◽  
Author(s):  
◽  
Preeti Kundu

<p>Tuberculosis (TB), which is estimated to affect 2 billion individuals worldwide, is an infection predominately caused by Mycobacterium tuberculosis(M. tuberculosis). Of particular concern is the increasing prevalence of TB, which is becoming resistant to the treatments currently available. Anthranilate phosphoribosyltransferase (AnPRT) catalyses the formation of N-(5’-phosphoribosyl)anthranilate (PRA) from 5-phospho-α-ribose-1-diphosphate (PRPP) and anthranilate and plays an important role in the synthesis of an essential amino acid in M.tuberculosis. A strain with a genetic knockout of the trpD gene, which encodes for the AnPRT enzyme, was unable to cause disease, even in immune-deficient mice. Therefore, this enzyme is a potential drug target for the development of new treatments against TB and other infectious diseases. This research explores the synthesis of different substrates and potential transition state analogues in order to understand catalysis and inhibition of AnPRT enzymes to aid novel drug design. The first part of this study utilises “bianthranilate-like” phosphonate inhibitors that display effective inhibition of the AnPRT enzyme, with the lowest Ki value being 1.3 μM. It was found strong enzymatic inhibition increases with an increased length of the phosphonate linker that occupies multiple anthranilate binding sites within the anthranilate binding channel of the enzyme. Crystal studies of the enzyme in complex with the inhibitors were carried out in order to expose the binding interactions. The second part of this study investigates several new compounds that target the active site of M. tuberculosis AnPRT, based on a virtual screening approach. This approach identified a strong AnPRT inhibitor, which displays an apparent Ki value of 7.0 ± 0.4 μM with respect to both substrates. This study also exposed a conformational change at the active site of the enzyme that occurs on inhibitor binding. The observed conformational changes of the enzyme active site diminish the binding of the substrate PRPP. These pieces of information provide future inhibitor design strategies to aid the development of novel anti-TB agents that target the AnPRT enzyme. To elucidate the reaction mechanism of M. tuberculosis AnPRT, the third part of this study explores the substrate binding sites in detail. This study uses structural analysis, complemented by differential scanning fluorimetry (DSF) and isothermal titration calorimetry (ITC), to reveal detailed information of the substrate and inhibitor binding sites. The final part of this thesis presents the synthesis of various PRPP analogues and potential transition state mimics that were designed based on the likely reaction mechanism of the enzyme. This set of inhibitors includes a number of iminoribitol analogues that were developed to capture the geometry of the flattened ribose ring and include a nitrogen atom within the ring to mimic the positive charge characteristics that are expected in the oxocarbenium-ion-like transition state predicted for M. tuberculosis AnPRT. Additionally, we were able to solve the structure of M. tuberculosis AnPRT in complex with one of the potential transition state mimics, which was observed to bind at the active site of the enzyme. This structure provides new insight into the catalytic mechanism of the enzyme and creates an opportunity to develop more specific inhibitors against the M. tuberculosis AnPRT enzyme.</p>


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Changyao Li ◽  
Yan Chai ◽  
Hao Song ◽  
Changjiang Weng ◽  
Jianxun Qi ◽  
...  

ABSTRACT E165R, a highly specific dUTP nucleotidohydrolase (dUTPase) encoded by the African swine fever virus (ASFV) genome, is required for productive replication of ASFV in swine macrophages. Here, we solved the high-resolution crystal structures of E165R in its apo state and in complex with its product dUMP. Structural analysis explicitly defined the architecture of the active site of the enzyme as well as the interaction between the active site and the dUMP ligand. By comparing the ASFV E165R structure with dUTPase structures from other species, we found that the active site of E165R is highly similar to those of dUTPases from Mycobacterium tuberculosis and Plasmodium falciparum, against which small-molecule chemicals have been developed, which could be the potential drug or lead compound candidates for ASFV. Our results provide important basis for anti-ASFV drug design by targeting E165R. IMPORTANCE African swine fever virus (ASFV), an Asfivirus affecting pigs and wild boars with up to 100% case fatality rate, is currently rampaging throughout China and some other countries in Asia. There is an urgent need to develop therapeutic and preventive reagents against the virus. Our crystallographic and biochemical studies reveal that ASFV E165R is a member of trimeric dUTP nucleotidohydrolase (dUTPase) family that catalyzes the hydrolysis of dUTP into dUMP. Our apo-E165R and E165R-dUMP structures reveal the constitutive residues and the configuration of the active center of this enzyme in rich detail and give evidence that the active center of E165R is very similar to that of dUTPases from Plasmodium falciparum and Mycobacterium tuberculosis, which have already been used as targets for designing drugs. Therefore, our high-resolution structures of E165R provide useful structural information for chemotherapeutic drug design.


ChemInform ◽  
2005 ◽  
Vol 36 (9) ◽  
Author(s):  
James R. Arnold ◽  
Keith W. Burdick ◽  
Scott C.-H. Pegg ◽  
Samuel Toba ◽  
Michelle L. Lamb ◽  
...  

2021 ◽  
Author(s):  
Hayden Burdett ◽  
Xiahao Hu ◽  
Maxwell X Rank ◽  
Natsumi Maruta ◽  
Bostjan Kobe

TIR domains are signalling domains present in plant nucleotide-binding leucine-rich repeat receptors (NLRs), with key roles in plant innate immunity. They are required for the induction of a hypersensitive response (HR) in effector-triggered immunity, but the mechanism by which this occurs is not yet fully understood. It has been recently shown that the TIR domains from several plant NLRs possess NADase activity. The oligomeric structure of TIR-containing NLRs ROQ1 and RPP1 reveals how the TIR domains arrange into an active conformation, but low resolution around the NAD+ binding sites leaves questions unanswered about the molecular mechanisms linking self-association and NADase activity. In this study, a number of crystal structures of the TIR domain from the grapevine NLR RUN1 reveal how self-association and enzymatic activity may be linked. Structural features previously proposed to play roles involve the ″AE interface″ (mediated by helices A and E), the ″BB-loop″ (connecting β-strand B and helix B in the structure), and the ″BE interface″ (mediated by the BB-loop from one TIR and the ″DE surface″ of another). We demonstrate that self-association through the AE interface induces conformational changes in the NAD+-binding site, shifting the BB-loop away from the catalytic site and allowing NAD+ to access the active site. We propose that an intact ″DE surface″ is necessary for production of the signalling product (variant cyclic ADPR), as it constitutes part of the active site. Addition of NAD+ or NADP+ is not sufficient to induce self-association, suggesting that NAD+ binding occurs after TIR self-association. Our study identifies a mechanistic link between TIR self-association and NADase activity.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1636-C1636
Author(s):  
Chun-Liang Chen ◽  
Cynthia Stauffacher

Mevalonate diphosphate decarboxylases (MDD) (EC 4.1.1.33) catalyze the Mg2+-dependent decarboxylation of mevalonate 5-diphosphate (MVAPP) by hydrolyzing adenosine triphosphate (ATP) and producing isopentenyl diphosphate (IPP) in the final step of mevalonate pathway. This enzyme is essential in Enterococcus faecalis and other Gram (+) bacteria; therefore, MDD protein is an ideal drug target for the treatment of bacterial infections. We have studied the enzyme kinetics and structures of MDD from Enterococcus faecalis (MDDEF) which causes clinical enterorococcal infections. In the crystal structure of the MDDEF bound with ATP, the catalytically unfavored orientation of the γ-phosphate of ATP implies that conformational changes of MDDEF might occur in order to accommodate the binding of ATP when the MVAPP binds to the active site in advance. A 10-fold decrease of the dissociation constrant (Kd) value of ATPγS has been observed using isothermal titration calorimetry (ITC) when MDDEF is pre-bound with MVAPP. The increase of binding affinity of ATPγS suggests that cooperative binding of ATP to MDDEF can be achieved by the prerequisite binding of MVAPP. Indeed, the crystal structure of MDDEF soaked with the MVAPP shows that one flexible loop that eventually should bind ATP becomes non-flexible and bends toward the active site of MDDEF. Thus, we hypothesize that the binding of the MVAPP to the active site triggers conformational changes of MDDEF which induces the binding of the other substrate, ATP, in its catalytically favored position. Further experiments will be performed for investigating a substrate-binding mechanism for MDDEF and these will serve as platforms for specific drug development in the near future.


1982 ◽  
Vol 28 (1) ◽  
pp. 236-239 ◽  
Author(s):  
F Gorus ◽  
W Aelbrecht ◽  
B Van Camp

Abstract Macromolecular LD (lactate dehydrogenase, EC 1.1.1.27) was present in the serum of a patient suffering from idiopathic fibrosis of the lung and presenting signs of autoimmune disease. By using gel filtration and affinity chromatography techniques, the vast majority of the patient's serum LD activity was shown to consist of LD-IgG complexes, which dissociated in the presence of added nicotinamide adenine dinucleotide (NAD+). Binding studies with tritiated NAD+ indicated that complex formation was not ascribable to a lack of circulating cofactor. The most likely explanation for the complex formation was the existence of LD binding sites on IgG molecules. The disruption of the complex by NAD+ might be explained by a competition between IgG molecules and NAD+ for the LD active site or by conformational changes induced in the LD molecules on binding of NAD+.


2020 ◽  
Vol 6 (43) ◽  
pp. eabd7182
Author(s):  
Xingzhe Yao ◽  
Chao Chen ◽  
Yefei Wang ◽  
Sheng Dong ◽  
Ya-Jun Liu ◽  
...  

Many important proteins undergo pH-dependent conformational changes resulting in “on-off” switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.


2011 ◽  
Vol 286 (18) ◽  
pp. 16197-16207 ◽  
Author(s):  
Sebastian Reichau ◽  
Wanting Jiao ◽  
Scott R. Walker ◽  
Richard D. Hutton ◽  
Edward N. Baker ◽  
...  

Tuberculosis remains a serious global health threat, with the emergence of multidrug-resistant strains highlighting the urgent need for novel antituberculosis drugs. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step of the shikimate pathway for the biosynthesis of aromatic compounds. This pathway has been shown to be essential in Mycobacterium tuberculosis, the pathogen responsible for tuberculosis. DAH7PS catalyzes a condensation reaction between P-enolpyruvate and erythrose 4-phosphate to give 3-deoxy-d-arabino-heptulosonate 7-phosphate. The enzyme reaction mechanism is proposed to include a tetrahedral intermediate, which is formed by attack of an active site water on the central carbon of P-enolpyruvate during the course of the reaction. Molecular modeling of this intermediate into the active site reported in this study shows a configurational preference consistent with water attack from the re face of P-enolpyruvate. Based on this model, we designed and synthesized an inhibitor of DAH7PS that mimics this reaction intermediate. Both enantiomers of this intermediate mimic were potent inhibitors of M. tuberculosis DAH7PS, with inhibitory constants in the nanomolar range. The crystal structure of the DAH7PS-inhibitor complex was solved to 2.35 Å. Both the position of the inhibitor and the conformational changes of active site residues observed in this structure correspond closely to the predictions from the intermediate modeling. This structure also identifies a water molecule that is located in the appropriate position to attack the re face of P-enolpyruvate during the course of the reaction, allowing the catalytic mechanism for this enzyme to be clearly defined.


2014 ◽  
Vol 70 (a1) ◽  
pp. C413-C413
Author(s):  
Mahmudul Hasan ◽  
Agnes Rinaldo-Matthis ◽  
Marjolein Thunnissen

Vertebrate leukotriene A4 hydrolases are zinc metalloenzymes with an epoxide hydrolase and aminopeptidase activity belonging to the M1 family of aminopeptidases. Bestatin, an amino peptidase inhibitor, can inhibit both the activities. The human enzyme produces LTB4, a powerful mediator of inflammation and is implicated in a wide variety of rheumatoid diseases. The yeast homolog scLTA4H contains only a rudimentary epoxide hydrolase activity. Both the structure of the human enzyme and recently the structure of scLTA4H and have been solved to investigate the molecular architecture of the active site both with and without inhibitor Bestatin. The structure of scLTA4H shows large domain movements creating an open active site. In the human enzyme the LTA4 binding side is a narrow hydrophobic channel. Upon inhibitor a domain shifts occurs and the final binding pocket is formed. The fact that scLTA4H displays this induced fit is an interesting observation. Many members of the M1 family seem to display a certain degree of induced fit, a feature, which however, has never been observed for humLTA4H. Our recent solution SAXS studies show that humLTA4H does not make any conformational changes upon inhibitor binding which is consistent with our previous speculation that it functions by a lock and key mechanism rather than induced fit and is better suited to supply the protective and precise environment for hydrolysis of LTA4 into LTB4. On the other hand Xenopus LTA4H shows conformational change in the higher/wide angular region ( >1 nm-1) and decrease in Porod volume of approximately 20 nm3 but no change in Rg or Dmax was observed. It is also observed that like in crystal structure Xenopus LTA4H forms dimer in solution. Similarly scLTA4H forms dimer in solution, which is unlike the crystal structure, and also make conformational changes upon inhibitor binding. Taken together, Xenopus and scLTA4H makes more compact form, with decrease in flexibility, to perform it's catalytic action.


Sign in / Sign up

Export Citation Format

Share Document