scholarly journals Impact of salinity on the kinetics of CO2 fixation by Spirulina platensis cultivated in semi-continuous photobioreactors

2021 ◽  
Vol 46 (1) ◽  
pp. 21-34
Author(s):  
Javier Christian Ramirez-Perez ◽  
Harry Janes

In this research, the physiological response of the microalgae Spirulina platensis to salinity stress (1 and 100 g L-1 ) was investigated. Spirulina platensis and Spirulina platensis (adapted to high salt concentration) were operated at laboratory scale in a semi-continuous photobioreactors. The responses examined were within 0.5 to 10% CO2 concentration, temperatures from 10 to 40 oC, light intensities from 60 to 200 μmol m-2 s -1 and presented better results in terms of all kinetic parameters. The highest rate of CO2 biofixation for Spirulina platensis was 25.1 gCO2 m-3 h -1 , and the maximum specific growth (μmax) achieved was 0.44 d-1 - 0.67 d-1 at 2.5% CO2, 150 µmol m-2 s -1 at 25 oC. Corresponding determined values of Spirulina platensis adapted were 18.2 gCO2 m-3 h -1 , 0.31 d-1 - 0.58 d-1 at 2.5% CO2, 60 µmol s-1 m-2 and 28 oC. However, both microalgae exhibited experimental limiting growth factors, CO2 10%, 40 oC and 200 µmol m-2 s -1 , conditions under which photosynthetic CO2 biofixation may be inhibited and photoinhibition of photosynthesis may be enhanced by salinity. The efficiency of 2.5% CO2 removal by Spirulina platensis achieved 99%, whereas Spirulina platensis adapted to 96%, respectively. The kinetic parameters estimated for Spirulina platensis can be used to improve photobioreactor design for reducing of atmospheric carbon dioxide.

Author(s):  
Dan Dye ◽  
Jeff Muhs ◽  
Byard Wood ◽  
Ron Sims

A photobioreactor with an optical system that spatially dilutes solar photosynthetic active radiation has been designed, built, and tested at the Utah State University Biofuels Center. This photobioreactor could be used to produce microalgal biomass for a number of purposes, such as feedstock for an energy conversion process or high-value products such as pharmaceuticals and nutraceuticals. In addition, the reactor could be used to perform services such as removing nitrates, phosphates, and other contaminants from waste water, as well as scrubbing toxic gases and carbon dioxide from flue gas. Preliminary tests were performed that compared growth and productivity kinetics of this reactor with that of a control reactor simulating a pond. Tests indicated higher specific growth rates and higher areal and volumetric yields compared with the control reactor. The maximum specific growth rate, volumetric yield, and areal yield were 0.21 day−1, 0.059 gm L−1 day−1, and 15 gm m−2 day−1, respectively. Over 10 days of sequential-batch operation, the prototype photobioreactor converted direct-normal solar energy to energy stored in biomass at an average efficiency of 1%. The areal productivity, as mass per aperture per time, was three times higher than that of the control reactor, indicating the photobioreactor design investigated holds promise.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Dan Dye ◽  
Jeff Muhs ◽  
Byard Wood ◽  
Ron Sims

A photobioreactor with an optical system that spatially dilutes solar photosynthetic active radiation has been designed, built, and tested at the Utah State University Biofuels Center. This photobioreactor could be used to produce microalgal biomass for a number of purposes, such as feedstock for an energy conversion process, or high-value products, such as pharmaceuticals and nutraceuticals. In addition, the reactor could be used to perform services such as removing nitrates, phosphates, and other contaminants from waste water, as well as scrubbing toxic gases and carbon dioxide from flue gas. Preliminary tests were performed that compared growth and productivity kinetics of this reactor with that of a control reactor without spatial light-dilution. Tests indicated higher specific growth rates and higher areal and volumetric yields compared with the control reactor. The maximum specific growth rate, volumetric yield, and areal yield were 0.21 day−1, 0.059 gm l−1 day−1, and 15 gm m−2 day−1, respectively. Over 10 days of sequential-batch operation, the prototype photobioreactor converted direct-normal solar energy to energy stored in biomass at an average efficiency of 1%. The areal productivity, as mass per aperture per time, was three times higher than that of the control reactor, indicating the photobioreactor design investigated holds promise.


1980 ◽  
Vol 45 (11) ◽  
pp. 2873-2882
Author(s):  
Vladislav Holba ◽  
Ján Benko

The kinetics of alkaline hydrolysis of succinic acid monomethyl and monopropyl esters were studied in mixed aqueous-nonaqueous media at various temperatures and ionic strengths. The results of measurements are discussed in terms of electrostatic and specific interactions between the reactants and other components of the reaction mixture. The kinetic parameters in the media under study are related to the influence of the cosolvent on the solvation sphere of the reactants.


1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


2021 ◽  
Author(s):  
Xiao Wang ◽  
Xiaoli Wei ◽  
Gaoyin Wu ◽  
Shengqun Chen

Abstract The study of plant responses to increases in atmospheric carbon dioxide (CO2) concentration is crucial to understand and to predict the effect of future global climate change on plant adaptation and evolution. Increasing amount of nitrogen (N) can promote the positive effect of CO2, while how N forms would modify the degree of CO2 effect is rarely studied. The aim of this study was to determine whether the amount and form of nitrogen (N) could mitigate the effects of elevated CO2 (eCO2) on enzyme activities related to carbon (C) and N metabolism, the C/N ratio, and growth of Phoebe bournei (Hemsl.) Y.C. Yang. One-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) (350 ± 70 μmol•mol−1) or an eCO2 (700 ± 10 μmol•mol−1) concentration and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. In seedlings treated with a moderate level of nitrate, the activities of key enzymes involved in C and N metabolism (i.e., Rubisco, Rubisco activase and glutamine synthetase) were lower under eCO2 than under aCO2. By contrast, key enzyme activities (except GS) in seedlings treated with high nitrate or ammonium were not significantly different between aCO2 and eCO2 or higher under eCO2 than under aCO2. The C/N ratio of seedlings treated with moderate or high nitrate under eCO2was significantly changed compared with the seedlings grown under aCO2, whereas the C/N ratio of seedlings treated with ammonium was not significantly different between aCO2 and eCO2. Therefore, under eCO2, application of ammonium can be beneficial C and N metabolism and mitigate effects on the C/N ratio.


1985 ◽  
Vol 69 (5) ◽  
pp. 607-611 ◽  
Author(s):  
Pietro Delva ◽  
Mario De Gasperi ◽  
Maurizio Degan ◽  
Grazia Covi ◽  
Alessandro Lechi

1. Outward bumetanide-sensitive Na+-K+ co-transport was studied in the erythrocytes of 51 subjects, 24 normotensive subjects and 27 hypertensive patients, matched for sex and age. 2. Three kinetic parameters of this cation transport system were considered: velocity of efflux at saturating internal sodium (Nai) concentrations (Vmax.), apparent affinity for sodium (K50%) and index of co-operativity among Nai sites (Hill's n). 3. We correlated these values with clinical and laboratory data determined routinely in hypertension. 4. There were no significant differences between normotensive and hypertensive subjects for the values considered and we did not find any significant correlations between co-transport and clinical data.


1992 ◽  
Vol 25 (6) ◽  
pp. 125-139 ◽  
Author(s):  
J. Kappeler ◽  
W. Gujer

To predict the behaviour of biological wastewater treatment plants, the Activated Sludge Model No. 1 is often used. For the application of this model kinetic parameters and wastewater composition must be known. A simple method to estimate kinetic parameters of heterotrophic biomass and COD wastewater fractions is presented. With three different types of batch-tests these parameters and fractions can be determined by measuring oxygen respiration. Our measurements showed that the maximum specific growth rate µmax of heterotrophic biomass depends on temperature, reactor configuration and SRT. In typical wastewater treatment plants of Switzerland the amount of readily biodegradable substrate was generally small (about 9 % of the COD in primary effluent). The same method can also be used to determine kinetic parameters of nitrifying biomass.


Sign in / Sign up

Export Citation Format

Share Document