Voltammetric method for determination of glutathione on a gold-carbon-containing electrode

2019 ◽  
Vol 85 (1(I)) ◽  
pp. 28-34
Author(s):  
A. S. Gashevskaya ◽  
E. V. Dorozhko ◽  
E. I. Korotkova ◽  
E. A. Pashkovskaya ◽  
O. A. Voronova ◽  
...  

Glutathione (GSH) is one of the most important thiol-containing antioxidants involved into various biochemical processes in the human body. Glutathione determination in biological fluids (saliva, urine, serum) and pharmaceutical preparations is rather important for clinical practice. Various analytical methods — spectrophotometry, fluorimetry, high-performance liquid chromatography, NMR spectroscopy, capillary electrophoresis and electrochemical methods — are widely used for this purpose. Electrochemical methods are characterized by easy implementation, low cost and possibility of miniaturization. The electrochemical behavior of reduced (GSH) and oxidized (GSSG) glutathione on a gold-carbon-containing electrode (AuCE) was studied using cathodic voltammetry with different methods of removing oxygen from an electrochemical cell: nitrogen sparging and addition of sodium sulfite (4 mol/dm3). It has been shown that traces of H2O2 that remain in the near-electrode layer on the AuCE even after oxygen removal influence the electrochemical properties of GSH at a cathode sweep of the potential from 0 to –1.8 V: GSH is oxidized by H2O2 to GSSG, the most important product of this reaction is O2. An indirect determination of GSH by the current of oxygen reduction in the Na2SO3 medium in the concentration range from 0.5 × 10–8 to 4.2 × 10–8 mol/dm3 with a detection limit of 2.5 × 10–9 mol/dm3 is proposed. The developed voltammetric method is approved for the determination of GSH in certain pharmaceutical preparations.

Author(s):  
SK MANIRUL HAQUE ◽  
MURAD ALSAWALHA

Amlodipine is the best-prescribed medication for cardiovascular disease major risk factor for hypertension and atorvastatin well known for diabetic. First discussed low cost ultraviolet-visible technique for the determination and quantitation of drugs in pharmaceuticals and biological fluids. Chromatographic techniques have an application with respect to trace analysis. Different types of chromatography such as high-performance liquid chromatography, high performance thin layer chromatography have most frequent applications in the field of pharmaceutical as well as biomedical analyses. Chromatography combined with mass spectrophotometry has the ability to collect molecular ion, followed to prepare a spectrum to assess molecular weight as well as structure. High-performance liquid chromatography coupled with mass spectrophotometry is a reliable and dynamic technique for the analysis of small and large drugs molecule. The advantages and disadvantages of all techniques are compared with each other with respect to sensitivity, reproducibility and other important parameters. The investigation also focused for the quantitation on both drugs in pharmaceutical preparations and plasma samples with the help of all available analytical techniques.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 50710-50720 ◽  
Author(s):  
A. Golbabanezhadazizi ◽  
E. Ranjbari ◽  
M. R. Hadjmohammadi ◽  
H. Daneshinejad

This work reports an efficient, quick and low-cost procedure for the determination of serotonin reuptake inhibitors (SSRIs) in low concentration levels in biological fluids.


2020 ◽  
Vol 16 (8) ◽  
pp. 1032-1040
Author(s):  
Laleh Samini ◽  
Maryam Khoubnasabjafari ◽  
Mohamad M. Alimorad ◽  
Vahid Jouyban-Gharamaleki ◽  
Hak-Kim Chan ◽  
...  

Background: Analysis of drug concentrations in biological fluids is required in clinical sciences for various purposes. Among other biological samples, exhaled breath condensate (EBC) is a potential sample for follow up of drug concentrations. Methods: A dispersive liquid-liquid microextraction (DLLME) procedure followed by a validated liquid chromatography method was employed for the determination of budesonide (BDS) in EBC samples collected using a homemade setup. EBC is a non-invasive biological sample with possible applications for monitoring drug concentrations. The proposed analytical method is validated according to the FDA guidelines using EBC-spiked samples. Its applicability is tested on EBC samples collected from healthy volunteers receiving a single puff of BDS. Results: The best DLLME conditions involved the use of methanol (1 mL) as a disperser solvent, chloroform (200 μL) as an extraction solvent, and centrifugation rate of 3500 rpm for 5 minutes. The method was validated over a concentration range of 21-210 μg·L-1 in EBC. Inter- and intra-day precisions were less than 10% where the acceptable levels are less than 20%. The validated method was successfully applied for the determination of BDS in EBC samples. Conclusion: The findings of this study indicate that the developed method can be used for the extraction and quantification of BDS in EBC samples using a low cost method.


2020 ◽  
Vol 16 (4) ◽  
pp. 456-464
Author(s):  
Danilo F. Rodrigues ◽  
Hérida R.N. Salgado

Background: A simple, eco-friendly and low-cost Infrared (IR) method was developed and validated for the analysis of Cefepime Hydrochloride (CEF) in injectable formulation. Different from some other methods, which employ organic solvents in the analyses, this technique does not use these types of solvents, removing large impacts on the environment and risks to operators. Objective: This study aimed at developing and validating a green analytical method using IR spectroscopy for the determination of CEF in pharmaceutical preparations. Methods: The method was validated according to ICH guidelines and the quantification of CEF was performed in the spectral region absorbed at 1815-1745 cm-1 (stretching of the carbonyl group of β- lactam ring). Results: The validated method showed to be linear (r = 0.9999) in the range of 0.2 to 0.6 mg/pellet of potassium bromide, as well as for the parameters of selectivity, precision, accuracy, robustness and Limits of Detection (LOD) and Quantification (LOQ), being able to quantify the CEF in pharmaceutical preparations. The CEF content obtained by the IR method was 103.86%. Conclusion: Thus, the method developed may be an alternative in the quality control of CEF sample in lyophilized powder for injectable solution, as it presented important characteristics in the determination of the pharmaceutical products, with low analysis time and a decrease in the generation of toxic wastes to the environment.


2020 ◽  
Vol 16 (3) ◽  
pp. 208-222
Author(s):  
Miglena Smerikarova ◽  
Stanislav Bozhanov ◽  
Vania Maslarska

Background: Sartans are mostly used as a part of combination with additional medicines in the therapy of essencial hypertension. Preferred combinations are ARB and thiazide diuretics (Hydrochlorothiazide (HCT) and Chlorthalidone (CHL)) or ARB and calcium antagonists. The number of sartans mostly prescribed by specialists is only seven - Candesartan (CDS), Eprosartan (EPS), Irbesartan (IBS), Losartan (LOS), Olmesartan (OMS), Telmisartan (TMS) and Valsartan (VLS). Methods: The widespread use of sartans in the treatment of hypertension requires reliable methods of analysis. Bulk drugs and pharmaceutical preparations should be analyzed to ensure the quality of the medicinal products reaching patients. On the other hand, the analysis of drugs in biological fluids aims to trace and improve patient care by adjusting the therapeutic doses of drugs. According to our knowledge, a review devoted to the analysis of sartans was published in 2014. Results: Spectral methods are widely used in the analysis of bulk drugs and pharmaceutical dosage forms due to their relatively simple procedures, low reagent and sample consumption, speed, precision and accuracy combined with accessibility and comparatively low cost of common apparatus. Many papers for determination of sartans in bulk drugs and pharmaceutical preparations based on liquid chromatographic techniques were published in the available literature. Among these methods, HPLC takes the leading place but UPLC and HPTLC are also present. Conclusion: The widespread use of sartans in the treatment of hypertension requires reliable methods of analysis. Bulk drugs and pharmaceutical preparations should be analyzed to ensure the quality of the medicinal products reaching patients. On the other hand, the analysis of drugs in biological fluids aims to trace and improve patient care by adjusting the therapeutic doses of drugs. Since 2014, many articles have been published on the sartans analysis and this provoked our interest to summarize the latest applications in the analysis of sartans in pharmaceutical formulations and biological media. Articles published from 2014 to 2018 are covered.


2018 ◽  
Vol 15 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Bürge Aşçı ◽  
Mesut Koç

Introduction:This paper presents the development and validation of a novel, fast, sensitive and accurate high performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical preparations.Experiment:Development of the chromatographic method was based on an experimental design approach. A five-level-three-factor central composite design requiring 20 experiments in this optimization study was performed in order to evaluate the effects of three independent variances including mobile phase ratio, flow rate and amount of acid in the mobile phase.Conclusion:The optimum composition for mobile phase was found as a methanol:water:acetic acid mixture at 71.6 : 26.4 : 2 (v/v/v) ratio and optimum separation was acquired by isocratic elution with a flow rate of 1.3 mL/min. The analytes were detected using a UV detector at 240 nm. The developed method was validated in terms of linearity, precision, accuracy, limit of detection/quantitation and solution stability and successfully applied to the determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical topical formulations such as suppositories and ointments.


2021 ◽  
Author(s):  
Naeime Salandari-Jolge ◽  
Ali A. Ensafi ◽  
Behzad Rezaei

Dipyridamole is a prescribed medication used to treat cardiovascular diseases, angina pectoris, imaging tests for heart patients, and myocardial infarction. Therefore, high selectivity and sensitivity, low cost, and high-performance speed...


Sign in / Sign up

Export Citation Format

Share Document