scholarly journals Long-term changes in masticated woody fuelbeds in northern California and southern Oregon, USA

2020 ◽  
Vol 29 (9) ◽  
pp. 807
Author(s):  
Warren P. Reed ◽  
J. Morgan Varner ◽  
Eric E. Knapp ◽  
Jesse K. Kreye

Mechanical mastication is a fuels treatment that shreds midstorey trees and shrubs into a compacted woody fuel layer to abate fire hazards in fire-prone ecosystems. Increased surface fuel loading from mastication may, however, lead to undesirable fire intensity, long-duration flaming or smouldering, and undesirable residual tree mortality. Two major questions facing fuels managers are: how long do masticated fuels persist, and how does the composition of masticated fuelbeds change over time? To evaluate these changes, we measured 25 masticated sites with a range of vegetation, species masticated and time since treatment (1–16 years) in the western US. Seven of the 25 sites were sampled nearly a decade earlier, providing a unique opportunity to document fuelbed changes. Woody fuel loading ranged from 12.1 to 91.9Mg ha−1 across sites and was negatively related to time since treatment. At remeasured sites, woody fuel loads declined by 20%, with the greatest losses in 1- and 10-h woody fuels (69 and 33% reductions in mass respectively). Reductions were due to declines in number of particles and reduced specific gravity. Mastication treatments that generate greater proportions of smaller-diameter fuels may result in faster decomposition and potentially be more effective at mitigating fire hazard.

2005 ◽  
Vol 35 (12) ◽  
pp. 2981-2995 ◽  
Author(s):  
Crystal L Raymond ◽  
David L Peterson

We had the rare opportunity to quantify the relationship between fuels and fire severity using prefire surface and canopy fuel data and fire severity data after a wildfire. The study area is a mixed-evergreen forest of southwestern Oregon with a mixed-severity fire regime. Modeled fire behavior showed that thinning reduced canopy fuels, thereby decreasing the potential for crown fire spread. The potential for crown fire initiation remained fairly constant despite reductions in ladder fuels, because thinning increased surface fuels, which contributed to greater surface fire intensity. Thinning followed by underburning reduced canopy, ladder, and surface fuels, thereby decreasing surface fire intensity and crown fire potential. However, crown fire is not a prerequisite for high fire severity; damage to and mortality of overstory trees in the wildfire were extensive despite the absence of crown fire. Mortality was most severe in thinned treatments (80%–100%), moderate in untreated stands (53%–54%), and least severe in the thinned and underburned treatment (5%). Thinned treatments had higher fine-fuel loading and more extensive crown scorch, suggesting that greater consumption of fine fuels contributed to higher tree mortality. Fuel treatments intended to minimize tree mortality will be most effective if both ladder and surface fuels are treated.


2020 ◽  
Vol 29 (6) ◽  
pp. 513 ◽  
Author(s):  
Phillip J. van Mantgem ◽  
Donald A. Falk ◽  
Emma C. Williams ◽  
Adrian J. Das ◽  
Nathan L. Stephenson

Fire severity in forests is often defined in terms of post-fire tree mortality, yet the influences on tree mortality following fire are not fully understood. Pre-fire growth may serve as an index of vigour, indicating resource availability and the capacity to recover from injury and defend against pests. For trees that are not killed immediately by severe fire injury, tree growth patterns could therefore partially predict post-fire mortality probabilities. Here, we consider the influence of multiple growth patterns on post-fire tree mortality for three common conifer species in the western USA. Using observations from 1 to 9 years following prescribed fires in USA national parks across five western states, we show that post-fire conifer mortality was related not only to fire-caused injuries (crown scorch and bole char), but also to average growth rate and long-term (25 years) growth patterns (counts of abrupt growth declines and possibly growth trends). Our results suggest that pre-fire conditions affecting tree vigour may influence post-fire tree mortality probabilities. Environmental conditions (such as rising temperatures and moisture stress), independent of fire intensity, may thus cause expressed fire severity to increase in western forests.


2016 ◽  
Vol 25 (9) ◽  
pp. 1002 ◽  
Author(s):  
Jesse K. Kreye ◽  
J. Morgan Varner ◽  
Jeffrey M. Kane ◽  
Eric E. Knapp ◽  
Warren P. Reed

Mastication of shrubs and small trees to reduce fire hazard has become a widespread management practice, yet many aspects of the fire behaviour of these unique woody fuelbeds remain poorly understood. To examine the effects of fuelbed aging on fire behaviour, we conducted laboratory burns with masticated Arctostaphylos spp. and Ceanothus spp. woody debris that ranged from 2 to 16 years since treatment. Masticated fuels that were 10 years or older burned with 18 to 29% shorter flame heights and 19% lower fireline intensities compared with the younger fuelbeds across three different fuel loads (25, 50 and 75 Mg ha–1). Older fuelbeds smouldered for almost 50% longer than the younger masticated fuelbeds. Fuel consumption was 96% in the two higher fuel load categories regardless of fuelbed age, whereas consumption was 77% in the lighter fuel load. Fire intensity in masticated fuels may decrease over time owing to particle degradation, but in dry environments where decomposition is slow, combustion of the remaining fuels may still pose risks for tree mortality and smoke production associated with protracted smouldering.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Valerie S. Densmore ◽  
Emma S. Clingan

Abstract Background Prescribed burning is used to reduce fire hazard in highly flammable vegetation types, including Banksia L.f. woodland that occurs on the Swan Coastal Plain (SCP), Western Australia, Australia. The 2016 census recorded well over 1.9 million people living on the SCP, which also encompasses Perth, the fourth largest city in Australia. Banksia woodland is prone to frequent ignitions that can cause extensive bushfires that consume canopy-stored banksia seeds, a critical food resource for an endangered bird, the Carnaby’s cockatoo (Calyptorynchus latirostris, Carnaby 1948). The time needed for banksias to reach maturity and maximum seed production is several years longer than the typical interval between prescribed burns. We compared prescribed burns to bushfires and unburned sites at three locations in banksia woodland to determine whether low-intensity prescribed burns affect the number of adult banksias and their seed production. Study sites were matched to the same vegetation complex, fire regime, and time-since-fire to isolate fire intensity as a variable. Results Headfire rates of spread and differenced normalized burn ratios indicated that prescribed burning was generally of a much lower intensity than bushfire. The percentage survival of adult banksias and their production of cones and follicles (seeds) did not decrease during the first three years following a prescribed burn. However, survival and seed production were significantly diminished followed high-intensity bushfire. Thus, carrying capacity for Carnaby’s cockatoo was unchanged by prescribed burning but decreased markedly following bushfire in banksia woodland. Conclusions These results suggest that prescribed burning is markedly different from bushfire when considering appropriate fire intervals to conserve canopy habitats in fire-resilient vegetation communities. Therefore, low-intensity prescribed burning represents a viable management tool to reduce the frequency and extent of bushfire impacts on banksia woodland and Carnaby’s cockatoo.


2021 ◽  
Vol 13 (10) ◽  
pp. 5369
Author(s):  
Rajesh Khatakho ◽  
Dipendra Gautam ◽  
Komal Raj Aryal ◽  
Vishnu Prasad Pandey ◽  
Rajesh Rupakhety ◽  
...  

Natural hazards are complex phenomena that can occur independently, simultaneously, or in a series as cascading events. For any particular region, numerous single hazard maps may not necessarily provide all information regarding impending hazards to the stakeholders for preparedness and planning. A multi-hazard map furnishes composite illustration of the natural hazards of varying magnitude, frequency, and spatial distribution. Thus, multi-hazard risk assessment is performed to depict the holistic natural hazards scenario of any particular region. To the best of the authors’ knowledge, multi-hazard risk assessments are rarely conducted in Nepal although multiple natural hazards strike the country almost every year. In this study, floods, landslides, earthquakes, and urban fire hazards are used to assess multi-hazard risk in Kathmandu Valley, Nepal, using the Analytical Hierarchy Process (AHP), which is then integrated with the Geographical Information System (GIS). First, flood, landslide, earthquake, and urban fire hazard assessments are performed individually and then superimposed to obtain multi-hazard risk. Multi-hazard risk assessment of Kathmandu Valley is performed by pair-wise comparison of the four natural hazards. The sum of observations concludes that densely populated areas, old settlements, and the central valley have high to very high level of multi-hazard risk.


2012 ◽  
Vol 468-471 ◽  
pp. 1753-1757
Author(s):  
Yang Wei Shao ◽  
Shih Feng Kao ◽  
Neng Chun Yu ◽  
Yu Shiang Wu ◽  
Chi Jan Huang ◽  
...  

Although meeting the regulations of the time, early buildings are prone to fire hazards, such as damages to the fire zones, changes of floor entrances and exits, locked emergency exit doors, blocking of entrances and exits by vehicles, increased fire sources, dense population in the buildings, due to insufficient professional knowledge and technology in fire prevention. Once a fire occurs, it can result in major casualties, serious loss of social costs, as well as environmental and social issues. This study investigated 17 major fire cases occurring in residential-commercial composite buildings in the last 20 years in Taiwan. The fire hazard factors were determined based on expert review. The findings can serve as a reference for fire agencies in promoting fire prevention.


FLORESTA ◽  
2013 ◽  
Vol 43 (4) ◽  
pp. 557
Author(s):  
Celso Darci Seger ◽  
Antonio Carlos Batista ◽  
Alexandre França Tetto ◽  
Ronaldo Viana Soares

As queimas controladas constituem práticas de manejo utilizadas em diferentes tipos de vegetação e difundidas em vários países. No entanto, para a realização de tais práticas com segurança e eficiência é fundamental o conhecimento do comportamento do fogo. O objetivo desse trabalho foi caracterizar o comportamento do fogo em queimas controladas de vegetação Estepe Gramíneo-Lenhosa no estado do Paraná. Para isso, foi instalado um experimento no município de Palmeira, onde 20 parcelas foram queimadas, sendo metade a favor e metade contra o vento. A carga de material combustível fino estimada foi de 2,26 kg.m-2, com teor médio de umidade de 50,45%. A quantidade de material consumido pela queima foi de 1,76 kg.m-2, com uma eficiência média de queima de 76,86%. As médias obtidas, a favor e contra o vento, foram respectivamente: velocidade de propagação do fogo de 0,049 e 0,012 m.s-1, altura das chamas de 1,34 e 0,843 m, intensidade do fogo de 210,53 e 50,68 kcal.m-1.s-1 e calor liberado de 4.067,19 e 4.508,92 kcal.m-2. Os resultados permitiram concluir que as queimas controladas em vegetação de campos naturais, realizadas dentro dos critérios estabelecidos de planos de queima, são viáveis e seguras sob o ponto de vista de perigo de incêndios.Palavras chave: Queima prescrita; material combustível; intensidade do fogo; perigo de incêndios. AbstractFire behavior of prescribed burns in grassland on Palmeira county, Paraná, Brazil. The prescribed burns are practices of management used in different types of vegetation and widespread in several countries. However, to carry out such practices safely and effectively is fundamental knowledge of fire behavior. The aim of this study was to characterize the fire behavior in controlled burning of grassland vegetation in Paraná state. For this, an experiment was conducted in Palmeira County, where 20 plots were burned, half in favor and half against the wind. The estimated fine fuel loading was 2.26 kg.m-2, with average moisture content of 50.45%. The fuel consumption by burning was 1.76 kg.m-2 with an average efficiency of burning of 76.86%. The averages, for and against the wind, were: speed of fire spread of 0.049 and 0.012 m.s-1, the flame height of 1.34 m and 0.843, fire intensity of 210.53 and 50.68 kcal.m-1.s-1 and heat released from 4,067.19 and 4,508.92 kcal.m-2. The results show that the controlled burnings of grasslands vegetation, carried out within the established criteria burning plans are feasible and safe from the aspect of fire danger.Keywords: Prescribed burns; fuel loading; fire intensity; fire risk.


2008 ◽  
Vol 17 (5) ◽  
pp. 602 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Volker C. Radeloff ◽  
Nicholas S. Keuler ◽  
Robert S. Taylor ◽  
Todd J. Hawbaker ◽  
...  

Humans influence the frequency and spatial pattern of fire and contribute to altered fire regimes, but fuel loading is often the only factor considered when planning management activities to reduce fire hazard. Understanding both the human and biophysical landscape characteristics that explain how fire patterns vary should help to identify where fire is most likely to threaten values at risk. We used human and biophysical explanatory variables to model and map the spatial patterns of both fire ignitions and fire frequency in the Santa Monica Mountains, a human-dominated southern California landscape. Most fires in the study area are caused by humans, and our results showed that fire ignition patterns were strongly influenced by human variables. In particular, ignitions were most likely to occur close to roads, trails, and housing development but were also related to vegetation type. In contrast, biophysical variables related to climate and terrain (January temperature, transformed aspect, elevation, and slope) explained most of the variation in fire frequency. Although most ignitions occur close to human infrastructure, fires were more likely to spread when located farther from urban development. How far fires spread was ultimately related to biophysical variables, and the largest fires in southern California occurred as a function of wind speed, topography, and vegetation type. Overlaying predictive maps of fire ignitions and fire frequency may be useful for identifying high-risk areas that can be targeted for fire management actions.


ICCD ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 616-617
Author(s):  
Anjas Handayani

During the first quarter of 2019, from January to March 2019 there were 45 fire incidents in the city of Bekasi with losses ranging from Rp. 2,365,000,000 (based on data from the Bekasi City fire dept Service). From 45 events in the city of Bekasi, 3 of them occurred in Jatisampurna sub-district. Based on the type of object 45 events 15 of which are residential houses.With the data above, it can be said that the risk of fire can cause material and immaterial losses and can also cause trauma to fire victims. The importance of knowledge and information on fire hazard mitigation and how mitigation measures against fire hazards need to be conveyed to people who live in densely populated areas where the risk of fire is quite large. Laws or regulations on fire are not yet widely owned by most regions, so there are no special rules that can be covered in relation to fire risk.


Sign in / Sign up

Export Citation Format

Share Document