Seismic performance of a bridge pier reinforced with titanium alloy bars

Author(s):  
Mahesh Acharya ◽  
Mustafa Mashal ◽  
Jared Cantrell

<p>The research in this paper focuses on the use of Titanium Alloy Bars (TiABs) in concrete bridge piers located in high seismic zones. The paper discusses a new bridge pier system that incorporates both seismic resiliency and durability concepts. A large-scale bridge pier, reinforced with TiABs and spiral, is tested under quasi-static cyclic loading protocol. The results are compared against a benchmark cast-in-place pier with normal rebars and spiral under the same loading protocol. Based on the testing results, the use of TiABs in concrete piers would reduce rebar congestion up to 50%, provide adequate ductility, and would result in reduced residual displacement following an earthquake. The pier reinforced with TiABs reached higher drift ratios compared to cast-in-place pier. Furthermore, smaller flexural cracks that are likely to appear in the plastic hinge zone during moderate earthquakes are not a major concern for structural performance and durability of bridge piers reinforced with TiABs.</p>

2006 ◽  
Vol 326-328 ◽  
pp. 1717-1720 ◽  
Author(s):  
Hyung Joong Joo ◽  
Seung Sik Lee ◽  
Soon Jong Yoon ◽  
Joo Kyung Park ◽  
Sun Kyu Cho

This paper presents the results of an experimental study on the seismic performance of reinforced concrete (RC) bridge piers wrapped with FRP at the lap-spliced region. It is well known that the FRP wrapping on the surface of concrete bridge pier can prevent concrete cover from spalling and it can reduce the slip displacement of lap-spliced longitudinal re-bars due to confinement. In order to develop the effective way of strengthening the concrete bridge pier with poor lap-spliced longitudinal re-bars, which is not designed under seismic design consideration, a series of pier test under seismic loading condition is conducted. As a result, FRP wrapped bridge pier under seismic loading exhibits ductile behavior with plastic deformation at lap-spliced region. Half-scaled six circular and nine square pier specimens were tested under uniform concentric axial compression and quasi-static lateral loading at the top of the pier. For the purpose of comparison, two piers without lap-splice and two piers with lap-splice were not wrapped with FRP and tested under same loading condition. Other experimental parameters were the height of FRP wrapping and the reinforcing method. The experimental results showed that the FRP wrapping could significantly increase ductility of piers with lap-spliced longitudinal re-bars at the potential plastic hinge region.


2012 ◽  
Vol 238 ◽  
pp. 765-768
Author(s):  
Rui Hong Gao ◽  
Rui Lin Chen ◽  
Su Gong Cao ◽  
Zhang Tang ◽  
Xin Qiang Xiao ◽  
...  

To analyze the second plastic hinge of high bridge pier formed in the earthquake and study the pier seismic performance, this paper takes the Kunming Slope Railway Bridge as an example. The simulation model was built by the elastic-plastic finite element ANSYS software. The buckling load of piers was calculated by buckling analysis capabilities of ANSYS software, a small enough initial offset given to the model, then the buckling load of piers put into the model. The deformation of non-linear model under the loads was calculated, the process was recorded that the reinforced concrete bridge piers initially yielding on the cross-section, continuously rotating around the neutral axis, and finally forming the eventually plastic hinges in certain parts of pier. The location of the plastic hinges can be inferred by final data of analysis software. By analyzing the calculated results, the seismic performance of the second plastic hinge in high bridge is studied.


2008 ◽  
Vol 64 (2) ◽  
pp. 317-332 ◽  
Author(s):  
Shinichi YAMANOBE ◽  
Naoki SOGABE ◽  
Hirokazu IEMURA ◽  
Yoshikazu TAKAHASHI

2021 ◽  
Author(s):  
Tadesse Gemeda Wakjira ◽  
M. Shahria Alam ◽  
Usama Ebead

Abstract Concrete bridge piers reinforced with conventional steel bars experience large permanent (residual) deformation that may lead to uneconomical repair or demotion of bridges due to their non-functionality post strong seismic event. Thus, sufficiently ductile materials are required to reinforce concrete bridge piers in the plastic hinge zone in order to limit their permanent damage and deformation post-earthquake event. Previous studies showed that partial replacement of conventional steel reinforcement bars with superelastic shape memory alloy (SMA) bars in the plastic hinge zone of concrete bridge piers has the capacity to limit the residual deformation owing to the superior self-centering properties of SMA bars. In this study, the efficacy of hybrid SMA/steel reinforcement for hollow section concrete bridge piers under combined reverse cyclic and constant axial loading is numerically investigated for the first time. The responses of the piers were evaluated in terms of different performance indices including hysteretic characteristics, residual deformation, energy dissipation capacity, and self-centering capacity. A sensitivity analysis was used to explore the main effects of key design parameters and their interactions on each performance index at four damage states, namely, complete, extensive, moderate, and slight damage states. The results of this study demonstrate the effectiveness of hybrid SMA/steel reinforcement for enhancing the seismic behavior of hollow section concrete bridge piers.


2019 ◽  
Vol 14 (01) ◽  
pp. 2050001
Author(s):  
Jize Mao ◽  
Daoguang Jia ◽  
Zailin Yang ◽  
Nailiang Xiang

Lack of corrosion resistance and post-earthquake resilience will inevitably result in a considerable loss of function for concrete bridge piers with conventional steel reinforcement. As an alternative to steel reinforcement, shape memory alloy (SMA)-based reinforcing bars are emerging for improving the seismic performance of concrete bridge piers. This paper presents an assessment of concrete bridge piers with different reinforcement alternatives, namely steel reinforcement, steel-SMA hybrid reinforcement and SMA reinforcement. The bridge piers with different reinforcements are designed having a same lateral resistance, or in other words, the flexural capacities of plastic hinges are designed equal. Based on this, numerical studies are conducted to investigate the relative performance of different bridge piers under seismic loadings. Seismic responses in terms of the maximum drift, residual drift as well as dissipated energy are obtained and compared. The results show that all the three cases with different reinforcements exhibit similar maximum drifts for different earthquake magnitudes. The SMA-reinforced bridge pier has the smallest post-earthquake residual displacement and dissipated energy, whereas the steel-reinforced pier shows the opposite responses. The steel-SMA hybrid reinforcement can achieve a reasonable balance between the residual deformation and energy dissipation.


2013 ◽  
Vol 353-356 ◽  
pp. 2069-2072
Author(s):  
Hua Ma ◽  
Xue Wei Zhang ◽  
Zhen Bao Li ◽  
Wen Jing Wang ◽  
Fang Liang Zhang ◽  
...  

An experiment of three T-shape beam-column steel joints with intensive cover plate was conducted under low cyclic loading with different cycle numbers, to study seismic performance of the joints subjected to long-period ground motions. Effects of cycle number on mechanical performance and length of plastic hinge were analyzed. The results show that as the cycle number increases, capacity of the joint decreases, and plastic hinge of the joint develops longer which appears closer to the cover plate, and the platform of skeleton curve grows longer, and the stiffness attenuates slightly.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yan Han ◽  
Jiawen Dong ◽  
Longlong Wang

In order to accelerate the construction of bridge substructure, a socket joint construction that does not require interfaces roughening between the precast columns and the reserved cavity of the precast foundation is raised in this paper. The seismic performance of such fabricated bridge piers was investigated by carrying quasistatic tests on socket circular pier specimens of different embedment depths with a compared cast-in-place pier specimen. The experimental results showed that the prefabricated piers with the embedment length larger than 1.0 times the column diameter, featuring smooth interfaces that was free of roughening, had a failure mode of bending damage as well as the cast-in-place component. As the embedment depth increases, the seismic performance indexes of the socket bridge pier, including bearing capacity, ductility, and energy dissipation capacity, are improved. The seismic performance indexes of a socket bridge pier specimen with an embedment depth of 1.5 times the column’s diameter in the test are better than the cast-in-place one.


Sign in / Sign up

Export Citation Format

Share Document