scholarly journals Towards standardisation: comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases

2019 ◽  
Vol 24 (50) ◽  
Author(s):  
Rana Jajou ◽  
Thomas A Kohl ◽  
Timothy Walker ◽  
Anders Norman ◽  
Daniela Maria Cirillo ◽  
...  

Background Whole genome sequencing (WGS) is a reliable tool for studying tuberculosis (TB) transmission. WGS data are usually processed by custom-built analysis pipelines with little standardisation between them. Aim To compare the impact of variability of several WGS analysis pipelines used internationally to detect epidemiologically linked TB cases. Methods From the Netherlands, 535 Mycobacterium tuberculosis complex (MTBC) strains from 2016 were included. Epidemiological information obtained from municipal health services was available for all mycobacterial interspersed repeat unit-variable number of tandem repeat (MIRU-VNTR) clustered cases. WGS data was analysed using five different pipelines: one core genome multilocus sequence typing (cgMLST) approach and four single nucleotide polymorphism (SNP)-based pipelines developed in Oxford, United Kingdom; Borstel, Germany; Bilthoven, the Netherlands and Copenhagen, Denmark. WGS clusters were defined using a maximum pairwise distance of 12 SNPs/alleles. Results The cgMLST approach and Oxford pipeline clustered all epidemiologically linked cases, however, in the other three SNP-based pipelines one epidemiological link was missed due to insufficient coverage. In general, the genetic distances varied between pipelines, reflecting different clustering rates: the cgMLST approach clustered 92 cases, followed by 84, 83, 83 and 82 cases in the SNP-based pipelines from Copenhagen, Oxford, Borstel and Bilthoven respectively. Conclusion Concordance in ruling out epidemiological links was high between pipelines, which is an important step in the international validation of WGS data analysis. To increase accuracy in identifying TB transmission clusters, standardisation of crucial WGS criteria and creation of a reference database of representative MTBC sequences would be advisable.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Higgins ◽  
Cooper A Grace ◽  
Soon A Lee ◽  
Matthew R Goddard

Abstract Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Pelerito ◽  
Alexandra Nunes ◽  
Teresa Grilo ◽  
Joana Isidro ◽  
Catarina Silva ◽  
...  

Brucellosis is an important zoonosis that is emerging in some regions of the world, gaining increased relevance with the inclusion of the causing agent Brucella spp. in the class B bioterrorism group. Until now, multi-locus VNTR Analysis (MLVA) based on 16 loci has been considered as the gold standard for Brucella typing. However, this methodology is laborious, and, with the rampant release of Brucella genomes, the transition from the traditional MLVA to whole genome sequencing (WGS)-based typing is on course. Nevertheless, in order to avoid a disruptive transition with the loss of massive genetic data obtained throughout the last decade and considering that the transition timings will vary considerably among different countries, it is important to determine WGS-based MLVA alleles of the nowadays sequenced genomes. On this regard, we aimed to evaluate the performance of a Python script that had been previously developed for the rapid in silico extraction of the MLVA alleles, by comparing it to the PCR-based MLVA procedure over 83 strains from different Brucella species. The WGS-based MLVA approach detected 95.3% of all possible 1,328 hits (83 strains×16 loci) and showed an agreement rate with the PCR-based MLVA procedure of 96.4% for MLVA-16. According to our dataset, we suggest the use of a minimal depth of coverage of ~50x and a maximum number of ~200 contigs as guiding “boundaries” for the future application of the script. In conclusion, the evaluated script seems to be a very useful and robust tool for the in silico determination of MLVA profiles of Brucella strains, allowing retrospective and prospective molecular epidemiological studies, which are important for maintaining an active epidemiological surveillance of brucellosis.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1152
Author(s):  
Samuel M. Chekabab ◽  
John R. Lawrence ◽  
Alvin C. Alvarado ◽  
Bernardo Z. Predicala ◽  
Darren R. Korber

In response to new stringent regulations in Canada regarding the use of antibiotics in animal production, many farms have implemented practices to produce animals that are raised without antibiotics (RWA) from birth to slaughter. This study aims to assess the impact of RWA production practices on reducing the actual total on-farm use of antibiotics, the occurrence of pathogens, and the prevalence of antimicrobial resistance (AMR). A 28-month longitudinal surveillance of farms that adopted the RWA program and conventional farms using antibiotics in accordance with the new regulations (non-RWA) was conducted by collecting fecal samples from 6-week-old pigs and composite manure from the barn over six time points and applying whole-genome sequencing (WGS) to assess the prevalence of AMR genes as well as the abundance of pathogens. Analysis of in-barn drug use records confirmed the decreased consumption of antibiotics in RWA barns compared to non-RWA barns. WGS analyses revealed that RWA barns had reduced the frequency of AMR genes in piglet feces and in-barn manure. However, metagenomic analyses showed that RWA barns had a significant increase in the frequency of pathogenic Firmicutes in fecal samples and pathogenic Proteobacteria in barn manure samples.


2018 ◽  
Author(s):  
David R. Greig ◽  
Ulf Schafer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

AbstractEpidemiological and microbiological data on Vibrio cholerae isolated between 2004 and 2017 (n=836) and held in the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome derived species identification and serotype for a sub-set of isolates (n=152). Of the 836 isolates, 750 (89.7%) were from faecal specimens, 206 (24.6%) belonged to serogroup O1 and seven (0.8%) were serogroup O139, and 792 (94.7%) isolates from patients reporting recent travel abroad, most commonly to India (n=209) and Pakistan (n=104). Of the 152 isolates of V. cholerae speciated by kmer identification, 149 (98.1%) were concordant with the traditional biochemical approach. Traditional serotyping results were 100% concordant with the whole genome sequencing (WGS) analysis for identification of serogroups O1 and O139 and Classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type (ST) 69, and in V. cholerae O1 Classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from UK travellers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from UK travellers will contribute to global surveillance programs, and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travellers and mitigate the impact of imported infections and the associated risks to public health.


2020 ◽  
Author(s):  
Sivakumar Shanmugam ◽  
Nathan L Bachmann ◽  
Elena Martinez ◽  
Ranjeeta Menon ◽  
Gopalan Narendran ◽  
...  

AbstractDifferentiation between relapse and reinfection in cases with tuberculosis (TB) recurrence has important implications for public health, especially in patients with human immunodeficiency virus (HIV) co-infection. Forty-one paired M. tuberculosis isolates collected from 20 HIV-positive and 21 HIV-negative patients, who experienced TB recurrence after previous successful treatment, were subjected to whole genome sequencing (WGS) in addition to spoligotyping and mycobacterial interspersed repeat unit (MIRU) typing. Comparison of M. tuberculosis genomes indicated that 95% of TB recurrences in the HIV-negative cohort were due to relapse, while the majority of TB recurrences (75%) in the HIV-positive cohort was due to re-infection (P=0.0001). Drug resistance conferring mutations were documented in four pairs (9%) of isolates associated with relapse. The high contribution of re-infection to TB among HIV patients warrants further study to explore risk factors for TB exposure in the community.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
David R. Greig ◽  
Ulf Schaefer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

ABSTRACT Epidemiological and microbiological data on Vibrio cholerae strains isolated between April 2004 and March 2018 (n = 836) and held at the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome-derived species identification and serotype for a subset of isolates (n = 152). Of the 836 isolates, 750 (89.7%) were from a fecal specimen, 206 (24.6%) belonged to serogroup O1, and 7 (0.8%) were serogroup O139; 792 (94.7%) isolates were from patients reporting recent travel abroad, most commonly to India (n = 209) and Pakistan (n = 104). Of the 152 V. cholerae isolates identified by use of kmer, 149 (98.1%) were concordant with those identified using the traditional biochemical approach. Traditional serotyping results were 100% concordant with those of the whole-genome sequencing (WGS) analysis for the identification of serogroups O1 and O139 and classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type 69 (ST69) and in V. cholerae O1 classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from U.K. travelers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from U.K. travelers will contribute to global surveillance programs and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travelers and mitigate the impact of imported infections and the associated risks to public health.


2020 ◽  
Vol 148 ◽  
Author(s):  
J. L. Guthrie ◽  
L. Strudwick ◽  
B. Roberts ◽  
M. Allen ◽  
J. McFadzen ◽  
...  

Abstract Yukon Territory (YT) is a remote region in northern Canada with ongoing spread of tuberculosis (TB). To explore the utility of whole genome sequencing (WGS) for TB surveillance and monitoring in a setting with detailed contact tracing and interview data, we used a mixed-methods approach. Our analysis included all culture-confirmed cases in YT (2005–2014) and incorporated data from 24-locus Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats (MIRU-VNTR) genotyping, WGS and contact tracing. We compared field-based (contact investigation (CI) data + MIRU-VNTR) and genomic-based (WGS + MIRU-VNTR + basic case data) investigations to identify the most likely source of each person's TB and assessed the knowledge, attitudes and practices of programme personnel around genotyping and genomics using online, multiple-choice surveys (n = 4) and an in-person group interview (n = 5). Field- and genomics-based approaches agreed for 26 of 32 (81%) cases on likely location of TB acquisition. There was less agreement in the identification of specific source cases (13/22 or 59% of cases). Single-locus MIRU-VNTR variants and limited genetic diversity complicated the analysis. Qualitative data indicated that participants viewed genomic epidemiology as a useful tool to streamline investigations, particularly in differentiating latent TB reactivation from the recent transmission. Based on this, genomic data could be used to enhance CIs, focus resources, target interventions and aid in TB programme evaluation.


Sign in / Sign up

Export Citation Format

Share Document